167 research outputs found
Antibiotic treatment regimes as a driver of the global population dynamics of a major gonorrhea lineage
The Neisseria gonorrhoeae multilocus sequence type (ST) 1901 is among the lineages most commonly associated with treatment failure. Here, we analyze a global collection of ST-1901 genomes to shed light on the emergence and spread of alleles associated with reduced susceptibility to extended-spectrum cephalosporins (ESCs). The genetic diversity of ST-1901 falls into a minor and a major clade, both of which were inferred to have originated in East Asia. The dispersal of the major clade from Asia happened in two separate waves expanding from ∼1987 and 1996, respectively. Both waves first reached North America, and from there spread to Europe and Oceania, with multiple secondary reintroductions to Asia. The ancestor of the second wave acquired the penA 34.001 allele, which significantly reduces susceptibility to ESCs. Our results suggest that the acquisition of this allele granted the second wave a fitness advantage at a time when ESCs became the key drug class used to treat gonorrhea. Following its establishment globally, the lineage has served as a reservoir for the repeated emergence of clones fully resistant to the ESC ceftriaxone, an essential drug for effective treatment of gonorrhea. We infer that the effective population sizes of both clades went into decline as treatment schemes shifted from fluoroquinolones via ESC monotherapy to dual therapy with ceftriaxone and azithromycin in Europe and the United States. Despite the inferred recent population size decline, the short evolutionary path from the penA 34.001 allele to alleles providing full ceftriaxone resistance is a cause of concern
From Theory to Practice: Translating Whole-Genome Sequencing (WGS) into the Clinic
Hospitals worldwide are facing an increasing incidence of hard-to-treat infections. Limiting infections and providing patients with optimal drug regimens require timely strain identification as well as virulence and drug-resistance profiling. Additionally, prophylactic interventions based on the identification of environmental sources of recurrent infections (e.g., contaminated sinks) and reconstruction of transmission chains (i.e., who infected whom) could help to reduce the incidence of nosocomial infections. WGS could hold the key to solving these issues. However, uptake in the clinic has been slow. Some major scientific and logistical challenges need to be solved before WGS fulfils its potential in clinical microbial diagnostics. In this review we identify major bottlenecks that need to be resolved for WGS to routinely inform clinical intervention and discuss possible solutions
Una Visión General del Sistema Financiero Colombiano
Desde finales de los 80 el sistema financiero colombiano ha experimentado cambios sensibles. En efecto, la liberalización financiera, el fortalecimiento de la regulación prudencial, la conversión de un número importante de sociedades en establecimientos de crédito, el aumento en los requisitos de capital, etc. han determinado un cambio de perfil en el sistema. Adicionalmente, en el pasado reciente las autoridades han tomado medidas en cuanto a la estructura de los encajes, aumentos en los requisitos de capital, el acceso al crédito externo, etc. que afectan de manera importante a las entidades financieras. A raíz de estas medidas ha surgido un debate acerca del tipo de sistema financiero que resulta más deseable para Colombia. La discusión es de vital importancia puesto que la estructura de encajes, las formas de intervención del Banco de la República en los mercados cambiario y monetario, la supervisión y todo el aparato regulatorio deben ser consistentes con el tipo de sistema que se desee. Con el fin de contribuir al debate, en este documento se presenta una breve descripción del estado actual del sistema financiero y su evolución reciente, se plantea una reflexión normativa acerca del tipo de sistema financiero que puede resultar más deseable y, finalmente,se presentan algunas recomendaciones.
Armed conflict and population displacement as drivers of the evolution and dispersal of Mycobacterium tuberculosis
The “Beijing” Mycobacterium tuberculosis (Mtb) lineage 2 (L2) is spreading globally and has been associated with accelerated disease progression and increased antibiotic resistance. Here we performed a phylodynamic reconstruction of one of the L2 sublineages, the central Asian clade (CAC), which has recently spread to western Europe. We find that recent historical events have contributed to the evolution and dispersal of the CAC. Our timing estimates indicate that the clade was likely introduced to Afghanistan during the 1979–1989 Soviet–Afghan war and spread further after population displacement in the wake of the American invasion in 2001. We also find that drug resistance mutations accumulated on a massive scale in Mtb isolates from former Soviet republics after the fall of the Soviet Union, a pattern that was not observed in CAC isolates from Afghanistan. Our results underscore the detrimental effects of political instability and population displacement on tuberculosis control and demonstrate the power of phylodynamic methods in exploring bacterial evolution in space and time
Inhibition of Competence Development, Horizontal Gene Transfer and Virulence in Streptococcus pneumoniae by a Modified Competence Stimulating Peptide
Competence stimulating peptide (CSP) is a 17-amino acid peptide pheromone secreted by Streptococcus pneumoniae. Upon binding of CSP to its membrane-associated receptor kinase ComD, a cascade of signaling events is initiated, leading to activation of the competence regulon by the response regulator ComE. Genes encoding proteins that are involved in DNA uptake and transformation, as well as virulence, are upregulated. Previous studies have shown that disruption of key components in the competence regulon inhibits DNA transformation and attenuates virulence. Thus, synthetic analogues that competitively inhibit CSPs may serve as attractive drugs to control pneumococcal infection and to reduce horizontal gene transfer during infection. We performed amino acid substitutions on conserved amino acid residues of CSP1 in an effort to disable DNA transformation and to attenuate the virulence of S. pneumoniae. One of the mutated peptides, CSP1-E1A, inhibited development of competence in DNA transformation by outcompeting CSP1 in time and concentration-dependent manners. CSP1-E1A reduced the expression of pneumococcal virulence factors choline binding protein D (CbpD) and autolysin A (LytA) in vitro, and significantly reduced mouse mortality after lung infection. Furthermore, CSP1-E1A attenuated the acquisition of an antibiotic resistance gene and a capsule gene in vivo. Finally, we demonstrated that the strategy of using a peptide inhibitor is applicable to other CSP subtype, including CSP2. CSP1-E1A and CSP2-E1A were able to cross inhibit the induction of competence and DNA transformation in pneumococcal strains with incompatible ComD subtypes. These results demonstrate the applicability of generating competitive analogues of CSPs as drugs to control horizontal transfer of antibiotic resistance and virulence genes, and to attenuate virulence during infection by S. pneumoniae
Crustal structure of the ultra-slow spreading Knipovich Ridge, North Atlantic, along a presumed ridge segment center
Interpreting whole genome sequencing for investigating tuberculosis transmission: a systematic review
BACKGROUND: Whole genome sequencing (WGS) is becoming an important part of epidemiological investigations of infectious diseases due to greater resolution and cost reductions compared to traditional typing approaches. Many public health and clinical teams will increasingly use WGS to investigate clusters of potential pathogen transmission, making it crucial to understand the benefits and assumptions of the analytical methods for investigating the data. We aimed to understand how different approaches affect inferences of transmission dynamics and outline limitations of the methods. METHODS: We comprehensively searched electronic databases for studies that presented methods used to interpret WGS data for investigating tuberculosis (TB) transmission. Two authors independently selected studies for inclusion and extracted data. Due to considerable methodological heterogeneity between studies, we present summary data with accompanying narrative synthesis rather than pooled analyses. RESULTS: Twenty-five studies met our inclusion criteria. Despite the range of interpretation tools, the usefulness of WGS data in understanding TB transmission often depends on the amount of genetic diversity in the setting. Where diversity is small, distinguishing re-infections from relapses may be impossible; interpretation may be aided by the use of epidemiological data, examining minor variants and deep sequencing. Conversely, when within-host diversity is large, due to genetic hitchhiking or co-infection of two dissimilar strains, it is critical to understand how it arose. Greater understanding of microevolution and mixed infection will enhance interpretation of WGS data. CONCLUSIONS: As sequencing studies have sampled more intensely and integrated multiple sources of information, the understanding of TB transmission and diversity has grown, but there is still much to be learnt about the origins of diversity that will affect inferences from these data. Public health teams and researchers should combine epidemiological, clinical and WGS data to strengthen investigations of transmission
- …
