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Interpreting whole genome sequencing for
investigating tuberculosis transmission:
a systematic review
Hollie-Ann Hatherell1,2*, Caroline Colijn3, Helen R. Stagg2, Charlotte Jackson2, Joanne R. Winter2

and Ibrahim Abubakar2,4

Abstract

Background: Whole genome sequencing (WGS) is becoming an important part of epidemiological investigations
of infectious diseases due to greater resolution and cost reductions compared to traditional typing approaches.
Many public health and clinical teams will increasingly use WGS to investigate clusters of potential pathogen
transmission, making it crucial to understand the benefits and assumptions of the analytical methods for
investigating the data. We aimed to understand how different approaches affect inferences of transmission
dynamics and outline limitations of the methods.

Methods: We comprehensively searched electronic databases for studies that presented methods used to interpret
WGS data for investigating tuberculosis (TB) transmission. Two authors independently selected studies for inclusion
and extracted data. Due to considerable methodological heterogeneity between studies, we present summary data
with accompanying narrative synthesis rather than pooled analyses.

Results: Twenty-five studies met our inclusion criteria. Despite the range of interpretation tools, the usefulness of
WGS data in understanding TB transmission often depends on the amount of genetic diversity in the setting.
Where diversity is small, distinguishing re-infections from relapses may be impossible; interpretation may be aided
by the use of epidemiological data, examining minor variants and deep sequencing. Conversely, when within-host
diversity is large, due to genetic hitchhiking or co-infection of two dissimilar strains, it is critical to understand how
it arose. Greater understanding of microevolution and mixed infection will enhance interpretation of WGS data.

Conclusions: As sequencing studies have sampled more intensely and integrated multiple sources of information,
the understanding of TB transmission and diversity has grown, but there is still much to be learnt about the origins
of diversity that will affect inferences from these data. Public health teams and researchers should combine
epidemiological, clinical and WGS data to strengthen investigations of transmission.

Keywords: Whole genome sequencing, Tuberculosis, Transmission, Systematic review

Background
The ability of whole genome sequencing (WGS) [1] to
discriminate between pathogen strains that are indistin-
guishable using other typing methods has greatly ad-
vanced the field of molecular epidemiology. More
discrimination is useful for surveillance and outbreak

source identification [2], and can lend support to pu-
tative transmission events and their direction, particu-
larly for pathogens with little genetic diversity [3].
Despite this advantage, previous reviews of WGS for
tuberculosis (TB) [4, 5] and infectious disease in gen-
eral [1, 6, 7], have highlighted variation in the
methods for producing and analysing data leading to
heterogeneous results that are difficult to compare.
Whilst the capacity to generate WGS data has grown
substantially, our understanding of how best to use
these data is incomplete.
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Although the limited diversity and complicated natural
history of TB infection needs special consideration,
many of the methods discussed in this review are also
employed for studying transmission of other patho-
gens (e.g. SARS coronavirus [8], methicillin-resistant
Staphylococcus aureus [9] and Clostridium difficile
[10]) and many of the issues raised will apply to these
pathogens. TB molecular epidemiology using WGS
has focussed on four aspects of transmission within
outbreaks [5, 6]: identifying chains of transmission;
differentiating between relapse and re-infection; meas-
uring within-host diversity and its impact on trans-
mission; and identifying primary versus acquired drug
resistance. Awareness of the methods and their limi-
tations should underpin the choice of analytical ap-
proaches. This review describes the methods used to
analyse WGS data, their limitations and implications
for clinical application.

Methods
The study was conducted, where relevant, in
accordance with the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA)
statement.

Search strategy and study selection
Wiley Online Library, ScienceDirect, PubMed, Embase
plus Embase Classic, CINAHL, MEDLINE and the Web
of Science Core Collection were searched on 14 July
2015 for the key terms and variants of ‘genome se-
quencing’, ‘tuberculosis’ and ‘transmission’, with no
date or language restrictions (see full search strategy
in Additional file 1: Appendix A). The reference lists
of included articles were also checked for any relevant
missing articles. Papers were double-screened by H-AH
and JRW and included if they analysed WGS data to in-
vestigate the transmission of Mycobacterium tuberculosis
(M.tb), according to any of the four topics prioritised for
this review (Fig. 1). Disagreements were resolved by HRS.
Reviews, opinion pieces, studies in non-human subjects
and of other mycobacteria were excluded.

Data extraction
Data from each study were extracted by H-AH and HRS
independently into a pre-designed spreadsheet that
included participant characteristics, the protocol for
bioinformatics analysis and the definition of mixed
infections, in line with STROME-ID guidelines [11]
(Additional file 2: Appendix B). Discrepancies between

Fig. 1 Visual representation of the four topics of the review, with colours representing different strains of TB. a Direction of transmission:
permissible either way for individuals with the same strain (same colour); excluded for cases with different strains. b Within-host diversity, in
the first instance as microevolution of an infecting strain and in the second due to mixed infection. A source case with a diverse burden
can transmit different combinations of strains. c Strain diversity over time. d Drug resistance patterns in the form of acquired drug resistance
mutations (red line) followed by transmission
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the reviewers were discussed until consensus was
reached.

Data synthesis and quality assessment
The heterogeneity in methods presented and the results
of the included publications rendered meta-analysis
inappropriate, thus a narrative synthesis of the main
findings is presented. Criteria from STROME-ID and
Newcastle-Ottawa were adapted (Additional file 3:
Appendix C) to evaluate the molecular and classical epi-
demiological aspects of study quality as either ‘adequate’,
‘inadequate’ or ‘unknown’. H-AH performed the quality
assessment and HRS independently confirmed 10 % of
the results. Discrepancies between the reviewers were
discussed until consensus was reached.

Protocol and registration
This review was registered on PROSPERO
(CRD42014015633).

Results
Of 358 papers identified after de-duplication (Fig. 2),
25 (reporting on 25 studies) met our inclusion criteria
with 97 % inter-reviewer agreement (Additional file 4:
Appendix D). Studies investigated one or more of the
following: the possibility of transmission regardless of
direction (12 studies) [12–23]; the direction of trans-
mission (9 studies) [13, 14, 16, 18, 24–28]; the nature
of TB recurrences (4 studies) [18, 24, 29, 30]; within-host
strain diversity in the context of transmission (7 studies)
[12, 13, 18, 21, 29–31]; and the emergence of drug

Fig. 2 PRISMA flowchart. *Includes one additional study that was found through reference list screening. M.tb, Mycobacterium tuberculosis; TB,
tuberculosis; WGS, whole genome sequencing
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resistance (6 studies) [23, 32–36]. These studies encom-
passed a wide range of populations (ages, ethnicities, co-
morbidities), countries with varying TB burdens and
differing dominant lineage.

Confirmation of transmission
Twelve studies used WGS to infer transmission
(irrespective of direction) by combining information on
single nucleotide polymorphisms (SNPs) as a measure of
genetic distance, epidemiological data and/or phylogeny
(Additional file 4: Appendix D) [12, 14–16, 21, 22]. Iden-
tifying clusters and outbreaks reveals the need for public
health investigation. Nine studies used a SNP threshold
to confirm transmission: Walker et al. [21] investigated
SNP differences within community and household clus-
ters in the UK, concluding that a 5 SNP threshold can
be used to exclude transmission because they found no
epidemiologically linked pairs of isolates exceeding this
level of difference. Later studies have similarly defined
thresholds using epidemiologically linked or genotypi-
cally clustered cases (Table 1) or employed existing SNP
thresholds to define transmission clusters [16, 18, 19].
An alternative approach [17] determined the variation
between improbable transmission pairs first and, as no
pair had less than 2 SNPs difference, used 0–1 SNPs be-
tween sequences to define a cluster.

Mutation rates were also used to assess whether trans-
mission was likely given the time between samples or
how long ago it occurred (assuming that the mutation
rate is constant over time) [18, 20]. For example,
Guerra-Assunção et al. [18] used a rate of 0.003 SNPs/
day with a SNP threshold to exclude links between cases.
Others used insertions or deletions to divide clusters
into smaller clusters and then precluded transmission
between individuals in different clusters [13, 14, 17].
Gardy et al. [12] also split their cluster according to a
phylogenetic tree that revealed two lineages and by
restricting transmission between the two constructed a
transmission network primarily based on contact tracing
and timing of infectious periods. In another study, trans-
mission events between epidemiologically linked cases
were excluded when the isolates involved were not adja-
cent on the phylogenetic tree [15].

Direction
Due to its higher resolution, WGS can reveal variation
between isolates that are identical by other typing
methods (such as mycobacterial interspersed repetitive
units-variable number tandem repeats (MIRU-VNTR))
[37], which may help to infer the direction of trans-
mission between cases. Proposed approaches include
SNP accumulation, Bayesian statistical inference and

Table 1 Studies using SNP thresholds to confirm recent transmission, relapse versus re-infection or microevolution versus mixed
infection

Journal article How was threshold
defined?

Cut-off Sampling fraction Lineages

Bryant et al. [30] Own data ≤6 SNPs relapse (same strain);
>1,306 re-infection (different)

47 sequenced out of 50 chosen Four major lineages

Clark et al. [23] Unknown <50 SNPs defined a cluster CAS, LAM, EAI, T1, T2,
Beijing, X1

Guerra-Assunção
et al. [29]

Own data ≤10 SNPs relapse; >100 re-infection 60 out of 139 WGS confirmed
recurrences

Four major lineages

Guerra-Assunção
et al. [18]

Own data (transmission);
Guerra-Assunção et al. [29]
(relapse)

≤10 SNPs confirmed transmission;
≤10 SNPs defined a relapse

1,687 out of 2,332 had WGS Four major lineages

Kato-Maeda et al. [26] Own data 0–2 SNPs per transmission event

Lee et al. [17] Own data 0–1 SNPs confirmed transmission 631 ‘improbable’ transmission
pairs—between outbreak cases
and cases in other villages

Outbreak isolates were
Euro-American lineage

Luo et al. [16] Walker et al. [21]

Roetzer et al. [14] Own data 3 SNPs confirmed transmission 31 out of 2,301 (for the threshold).
Equivalent to eight transmission
chains of 2–7 patients

Haarlem lineage

Walker et al. [21] Own data ≤5 SNPs cluster; >12 SNPs
no transmission

303 out of 609 (for the threshold) All five major lineages

Walker et al. [22] Own data 475, 1,032 and 1,096 SNPs suggested
that patients had been secondarily
infected with a different strain rather
than within-host evolution

Pulmonary vs extra pulmonary
pairs from 49 patients and
110 longitudinal isolates from
30 patients

All five major lineages

Witney et al. [19] Walker et al. [21]
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networks. Schürch et al. [24] examined transmission
direction using the accumulation of SNPs between
isolate sequences from epidemiologically linked pa-
tients. The method assumes that over time a strain
will acquire new SNPs and retain existing ones, and
direction of transmission is to the case with the add-
itional SNPs. This approach has since been applied by
others combined with patients’ TB histories and con-
tact tracing data (Table 2) [13, 26, 27] to make it
more robust. The studies found small numbers of
SNPs amongst small sample sizes (8 SNPs amongst 3
isolates [24], 7 in 9 [26] and 2 in 12 [27]), making
this approach easy to implement.
Another approach to determine transmission direction

is a statistical framework that integrates WGS data with
other information to estimate the probabilities of
hypothesised transmission chains rather than strictly de-
fine transmission events [8, 38]. Didelot et al. used a
Bayesian inference method to infer transmission events
and their direction from a phylogenetic tree, whilst tak-
ing into account within-host diversity [25], and applied
it to a TB outbreak of 33 cases in British Columbia,
Canada [12]. Such an approach can identify transmission
events that a direct analysis from epidemiological and

sequence data might not, but quantifying uncertainty in
this inference showed that even with WGS, there is con-
siderable uncertainty about transmission events.
Alternatively, studies have used minimum spanning,

neighbour joining or median joining networks to visualise
transmission using only genomic data [14, 16, 28, 31].
Three studies also created transmission networks but
included epidemiological data alongside the genomic
data: Walker et al. [21, 22] used their own algorithm
to create a similar network, which involved choosing
the epidemiological links between cases that had the
smallest SNP distance or shortest time; and Schürch
et al. [24] used temporal and contact tracing data to
assign an index in each SNP cluster and resolve a
transmission network.

Recurrences
Recurrent episodes of TB disease can be classified as re-
lapses or re-infections. The latter implies ongoing trans-
mission, requiring public health action, and suggests a
lack of immunity to the newly infecting strain or high
intensity of exposure [29, 39], whereas relapse suggests
inadequate treatment. To differentiate between relapse
and re-infection it is necessary to quantify the genomic
differences between isolates from the first and recurrent
episodes. There is a fundamental limitation in any gen-
omic investigation of this question because it is possible
to be re-infected with a genetically identical strain.
Analyses of data from the REMoxTB trial [30, 40] and

the Karonga Prevention Study [29] found a bimodal dis-
tribution of pairwise SNP differences between longitu-
dinal isolates: 0–6 [30] or 0–8 SNPs [29] were thought
to be relapses; and >1,306 [30] or >100 SNPs [29] re-
infections. Both found SNP distances larger than 1,000
when they recovered different lineages from the two epi-
sodes. Guerra-Assunção et al. [18] used these results to
classify recurrent cases of TB in their Malawian cohort,
defining them as relapses if they differed by less than 10
SNPs from the initial strain. In another study, Schürch
et al. [24] classified a recurrent case as re-infection be-
cause the recurrent strain differed by 1 SNP from the
initial infecting strain.

Within-host diversity
If within-host diversity is not fully captured, transmis-
sion might be inappropriately ruled out. For example, if
an individual co-infected with two dissimilar strains
transmits one of these to a contact, and different strains
are then isolated from the two patients, these cases
would not be identified as linked [41]. Within-host di-
versity can arise via mixed infections (a single infection
event with multiple distinct strains or repeated infection
events with distinct strains i.e. superinfection) or micro-
evolution (within-host evolution).

Table 2 Methods studies used to confirm direction of
transmission

Journal article How was direction of transmission determined?

Didelot et al. [25] Epidemiological data and WGS used in a
Bayesian inference framework to construct a
transmission tree

Gardy et al. [12] Social network analysis and contact tracing posed
putative transmission, timing of infection and
smear status was used to narrow down possible
direction and WGS to remove transmission events
involving cases with different lineages

Kato-Maeda et al. [26] Contact tracing and accumulation of SNPs

Luo et al. [16] Epidemiological links and timing of infection
and symptoms helped propose direction of
transmission between isolates in the same
WGS-based cluster. Transmission of mutant
alleles from case with mixed base calls

Mehaffy et al. [13] Genomic and epidemiological information
(i.e. SNP pattern, contact information, year of
diagnosis and infectiousness based on smear
and chest X-ray results)

Pérez-Lago et al. [31] In one case direction was proposed by the
transmission of mutant alleles from a case with
mixed base calls

Roetzer et al. [14] Contact tracing revealed transmission chains
and accumulation of variation is mentioned,
although not clear if this resolved the order of
the chain

Schürch et al. [24] Accumulation of SNPs

Smit et al. [27] Accumulation of SNPs and period of
infectiousness
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WGS studies have identified multiple co-infecting
TB strains in three ways. First, eight studies consid-
ered heterozygous base calls indicative of two strains
[18, 19, 21, 23, 26, 28–30]; i.e. if two bases are both
likely at a certain position. Definitions of mixed infec-
tions in terms of heterozygous base calls have varied
(Table 3), and are usually based on the proportion of
reads supporting the variant and sometimes the num-
ber of mixed base calls across the genome [29, 30].
Heterozygous base calls have also been interpreted as
variant subpopulations arising through microevolution
[16, 21, 31]. Second, Walker et al. [21] identified a
patient as having a mixed infection if two cross-
sectional or longitudinal isolates differed by ≥475
SNPs, and conversely, 11 SNPs or less defined micro-
evolution in contrast to the single SNP definition of a
re-infection [24]. Third, mixed infections were recog-
nised by one study when an isolate was placed in dif-
ferent lineages of a maximum likelihood phylogenetic
tree over multiple constructions [12]. A total of three
studies reported mixed infections within their cohort
according to their respective WGS definitions: 4 out
of 32 isolates [12]; 2 out of 60 pairs of isolates [29];
and 6 out of 47 pairs [30].
Several studies accounted for diversity when investi-

gating transmission. Walker et al. [21] allowed individ-
uals to be part of two (or more) transmission chains by
including multiple isolates per person in their networks
when it made SNP distances more parsimonious.
Similarly, Kato-Maeda et al. [26] considered one isolate

which contained a ‘mixed population’ of two other iso-
lates and reflected that one of them may have contained
and transmitted the same mixed population but it was
not detected. By collecting multiple cross-sectional sam-
ples, Pérez-Lago and colleagues [31] were able to build
within-host networks and link to other individuals so
were better able to resolve the transmission network.
Heterozygous base calls have also been used to untangle
transmission events: their presence can suggest trans-
mission from a patient with the reference allele followed
by microevolution in the second case or microevolution
in the first giving rise to an alternative allele followed by
transmission to a second case where the alternative
allele becomes fixed [16, 31].
Estimates of the within-host mutation rate can be used

to better understand transmission: assuming a low mu-
tation rate during latency, one cluster of eight patients
with zero SNPs over 9 years was considered evidence of
reactivation [13]. However, estimates have differed be-
tween studies: using longitudinal data, Walker et al.
found the within-host mutation rate to be lower than
the mutation rate during household outbreaks (0.3 vs 0.6
SNPs/genome/year) [21]; Guerra-Assunção et al. found
the within-host mutation rate higher than between
linked pairs in their transmission networks (0.45 vs 0.26
SNPs/genome/year) [18].
Seventeen of the 25 studies reported finding a propor-

tion of isolates recovered from different individuals that
were identical, either because there was no diversity or
they were unable to capture it. The proportion of

Table 3 Definitions of heterozygous base calls used to classify mixed infection

Journal article Mixed infections or
microevolution

Definition of heterozygous base call

Bryant et al. [30] Mixed infection Mixed base positions were identified at sites where more than one base had been identified
in a single sample, where each allele was supported by at least 5 % of reads (minimum read
depth of four). Included only positions without strand bias (p >0.05), had coverage within
the normal range, mapping quality score greater than 50 and base quality scores greater
than 30. Sites within 200 base pairs of other heterozygous sites were discounted because
of the possibility that they might have been caused by a mapping error. More than 80
heterozygous base calls defined a mixed infection

Guerra-Assunção et al. [18] Mixed infection Sample genotypes were called using the majority allele (minimum frequency 75 %) in
positions supported by at least 20-fold coverage; otherwise they were classified as missing
(thus ignoring heterozygous calls). We excluded samples with >15 % missing genotype calls,
to remove possible contaminated or mixed samples or technical errors

Guerra-Assunção et al. [29] Mixed infection A position was classified as heterozygous if >1 allele accounted for ≥30 % of the reads
(and there were >30 reads). More than 140 heterozygous positions in one sample classified
as mixed infection

Kato-Maeda et al. [26] Mixed infection Mixed infection was identified when there was a heterozygous base call: 38 % of reads
supported the variant; the rest supported reference

Luo et al. [16] Microevolution Kept only the calls in which the coverage was ten and the less frequent allele was supported
by at least five high-quality reads, as reliable calls. Presence of mixed base calls could indicate
microevolution in that patient

Pérez-Lago et al. [31] Mixed infection Less frequent nucleotide was supported by five reads

Walker et al. [21] Microevolution Suggestive of ‘sub-populations’; i.e. microevolution
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identical isolates from the total varied from study to
study; Schürch et al. [24] had a cluster of 89 identical
isolates out of 104 compared with Luo et al. [16] who
found 2 pairs of identical isolates out of 32. The presence
of identical isolates makes inference of the direction of
transmission impossible based on WGS data alone.

Drug resistance
WGS studies investigating the emergence of drug resist-
ance have attempted to ascertain whether a resistant
strain is being transmitted (primary resistance), requiring
more control effort or if resistance is arising separately
within individuals (secondary or acquired resistance),
suggesting poor drug adherence. Six studies investigated
this using similar methods.
Two studies [33, 34] constructed phylogenetic trees

and assumed that transmission of a drug-resistant strain
had occurred only if all isolates in a cluster had the same
resistance-conferring mutation (i.e. the resistance was
gained by an ancestor); otherwise drug resistance was
considered to have been acquired independently. The
studies also used drug resistance-conferring mutations
to suggest likely transmission patterns: in one cluster,
mutations conferring isoniazid and rifampicin resistance
were common amongst all isolates but resistance to
fluoroquinolones was not, suggesting that transmission
of a multi-drug-resistant (MDR) strain occurred, followed
by acquisition of fluoroquinolone resistance in some
isolates [33].
Clark et al. [23] used phylogeny and a threshold of 50

SNPs to define potential transmission clusters, but did
not require that all isolates within a cluster had the same
resistance mutation in order to consider transmission of
a resistant strain amongst a proportion of the isolates.
With the same principle but a different method, Casali
et al. [32] examined 1,000 isolates from Russia and used
the number of isolates with a certain resistance mutation
in a phylogenetic cluster as a proxy for whether resist-
ance was primary or acquired; i.e. only one case with a
certain drug resistance-conferring mutation in a phylo-
genetic cluster was assumed to represent acquired
resistance.
The remaining two studies did not build phylogenetic

trees as their isolates were considered to be one out-
break. Ocheretina and colleagues [36] determined that 6
of their 8 isolates had the same resistance mutation for
isoniazid and rifampicin, and thus judged that the out-
break represented primary resistance. Regmi et al. [35]
employed the same method but only examined 4 of the
54 isolates in their MDR-TB outbreak in Thailand.

Quality of studies
All 25 studies were assessed for their quality in terms
of ten standards (Additional file 3: Appendix C).

Inter-reviewer agreement was 86 %. Only a single
study was assessed to have an inadequate case defin-
ition due to using spoligotyping alone to define their
outbreak. Spoligotyping has been shown to have limited
discriminatory power compared to 24 loci MIRU-VNTR
[42], and thus this study was not comparable to the others
included. A single study was determined to be at risk of
ascertainment bias due to looking for SNPs in only 8 of
104 outbreak isolates and then establishing whether the
other isolates had those specific SNPs only. Given a lack
of consensus in the field for defining mixed infections, our
assessment considered heterozygous base calls to be ad-
equate and additionally ignored the ill-defined impact of
culturing; 64 % of studies did not document mixed infec-
tions. Only seven studies (28 %) documented measuring
or minimising cross-contamination. The comparison of
WGS and epidemiological data was mixed between stud-
ies, with a subset (20 %) commenting on epidemiological
data but without comparing the number of SNPs separat-
ing epidemiologically linked patients.

Discussion
Main findings: implications of analytical approaches on
WGS inferences
We have identified the range of analytical approaches in
using WGS data to infer transmission and its direction,
investigate recurrence, describe the impact of within-
host variation and assess transmission of resistant
strains.
SNP thresholds are common amongst the studies

reviewed for defining transmission as well as distinguish-
ing relapse from re-infection [29, 30] and microevolution
from mixed infections [21]. They are simple to imple-
ment but have limitations. The appropriate value for a
SNP threshold is context-specific and will be affected by
study-specific factors such as strain diversity in the set-
ting [31, 43], the definition of a quality read, the extent
of within-host diversity [15, 22, 25, 31, 38] and the num-
ber of amplification steps [1, 44–47] (Additional file 5:
Appendix E). Such factors may partially account for
apparently conflicting results concerning the SNP differ-
ences between linked cases in different studies compli-
cating the comparison of studies: three studies found
epidemiological links between cases with larger than 12
SNP differences [15, 22, 31], defined by Walker and col-
leagues as the upper limit of the SNP distance between
epidemiologically linked pairs.
The use of a threshold for transmission relies on

finding epidemiologically linked pairs [21]; however,
many links may be undetected [48], and the pres-
ence or absence of these links does not always prove
or disprove transmission. In high incidence settings
with endemic strains but no epidemiological links
[43], a threshold could suggest transmission incorrectly.
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Contrarily, unidentified cases may bridge the gap between
isolates with large SNP distances, resulting in a mixture of
large and small SNP distances for epidemiologically and
non-epidemiologically linked isolates [22] that provides no
useful cut-off. An alternative to a strict threshold would
be to consider the probability of transmission using an ap-
proximation to the pairwise distribution of genetic dis-
tances [49].
Many studies used the threshold without considering

the time between samples, which could erroneously ex-
clude remote transmission events where a large number
of SNPs have accumulated. Fundamentally, a threshold
relies on a constant mutation rate and despite good
agreement for the mutation rate of M.tb across multiple
epidemiological studies [14, 15, 18, 21], a recent study
[15] suggests that the relationship between SNPs and
time is affected by resistance and therefore potentially
other factors [13] by increasing the mutation rate. This
may be because of hitchhiking SNPs (mutations that be-
come fixed because they are physically attached to sites,
such as drug resistance genes, that are being selected for
[50]) or mutator phenotypes, but there have been many
conflicting results [51–56]. The ability of a strain to
mutate significantly in a fairly short time would mean
a fixed threshold could disregard transmission and
classify a relapse as a re-infection or microevolution
as mixed infection. Hence it is important to quantify
the effect of these factors on the mutation rate, in
vivo or otherwise.
The within-host mutation rate could similarly be used

to investigate the likelihood of relapse versus re-
infection and microevolution versus mixed infection.
There is uncertainty around whether the mutation rate
differs during latency compared to active disease [57, 58].
A lower mutation rate during latency would give rise to
less divergence between two cases in a transmission chain
with a short latency period, than one with a long latency
period. However, the results from the studies reviewed are
contradictory [18, 21] and thus more investigation is
needed.
Phylogenetic trees have also been used to investigate

the possibility of transmission between individuals [15].
Although these trees portray useful information about
sequence relatedness, phylogenetic trees are not equiva-
lent to transmission trees [38, 59] and due to their struc-
ture, it cannot always be the case that transmission pairs
are phylogenetically paired (Fig. 3). Thus excluding
transmission on this basis can be misleading. However,
phylogenetic trees have been used to resolve transmis-
sion in a Bayesian inference framework, which can be
useful particularly when manually inspecting SNPs is
challenging [25]. This approach assumes dense sampling
of cases, which is not often possible without active case
finding or with frequent migration. WGS data may leave

considerable uncertainty about transmission, which can
be mitigated using data such as smear positivity, time
since negative tuberculin skin test and individuals’ loca-
tions [25].
One of the key gains of WGS in M.tb epidemiology is

the ability to use SNP accumulation to determine the
direction of transmission, as recombination is consid-
ered to be absent [60]. Nevertheless, for such a precise
method that considers the position and type of each
SNP, sequencing errors misinterpreted as SNPs can have
a big impact on the inference [61] and homoplasy,
although unlikely [62], can be problematic. Inferred dir-
ection also depends on the choice of reference genome.
Limited genomic variation, due to the slow M.tb muta-

tion rate [13, 27, 63], also hampers methods for deter-
mining the direction of transmission. Information on
timing of exposure and infectiousness for contacts and
cases may help resolve transmission direction [16, 27],
although this may conflict with the quantitative inter-
pretation of SNPs [15, 22]. Discordance can be due to
‘casual’ contact resulting in transmission, reactivations
from historic infection, poor epidemiological data, or
limitations of WGS. Integrating multiple sources of data
and allowing for uncertainty in the epidemiological data
may allow the best possible understanding of transmis-
sion. It is also important to sample within-host diversity
thoroughly, but this has practical difficulties. Firstly, a
single sputum sample may not contain the full diversity
of mycobacteria present in the lungs [64] and may mis-
lead inferences as variants are introduced and purified
constantly. A potential solution could be to do longitu-
dinal sampling [4, 65]. Deep sequencing and examin-
ation of minor variants can also reveal diversity, and has
been attempted in the context of transmission [66]. Sec-
ondly, the methods of culturing [67] and obtaining ma-
terial for sequencing (e.g. selecting single colonies versus
sweeping an entire culture plate) can affect the apparent
extent of diversity [68, 69].
These difficulties with sampling, and the presence of

diversity, may increase the chances of recovering two
different strains from individuals linked in transmission.
A study by Liu and colleagues presented evidence of
multiple strains in an individual’s lung more than 14
SNPs apart that likely occurred due to microevolution
after infection [70]. This phenomenon could result in
transmission being ruled out if diversity is not detected,
particularly if a strict threshold cut-off is used to identify
transmission events. However, we are still unable to
know how commonly we underestimate diversity, as
multiple sampling or sampling directly from lesions is
not typically done. Determination of this would make it
easier to understand the frequency of undetected diver-
sity, and thus how important it is to be considered by
clinicians and researchers.
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Studies looking to differentiate between transmis-
sion of drug-resistant strains and acquisition of drug
resistance have used similar methods to each other.
However, they have differed in whether they needed
all isolates within a phylogenetic cluster to share the
same resistance-conferring mutation in order to con-
clude that there was transmission of drug-resistant
strains [33, 34]. If they share the same mutation then
it is more probable that the mutation arose in an an-
cestor to the phylogenetic cluster; i.e. the individual
earlier in the transmission chain and then the strain
was transmitted. However, by assuming this, transmis-
sion will be excluded when resistance arose in the
middle of a transmission chain and susceptible ances-
tral isolates are sampled and clustered with the drug-
resistant descendants.
Building transmission networks and incorporating re-

sistance mutation data to compare between transmission
pairs provides an alternative approach to resolve where
resistance is being transmitted versus acquired, aiding
interventions.
Several methods are available for examining within-

host diversity. Heterozygous base calls have been used to
determine microevolution and mixed infections, using
WGS; however, a variable and arbitrarily defined thresh-
old number of calls has been used to categorise mixed
infection. Incorrectly classifying mixed infections and
microevolution can affect inferences about transmission
and recurrent disease; better distinction between the two
is a topic for future research. With limited diversity,
co-infection with strains of the same lineage [29] will
not lead to switching between branches of the phylo-
genetic tree and consequently mixed infections will be
missed [12].

Fig. 3 Effect of sampling on the phylogenetic tree. a Representation
of a transmission tree, where nodes represent individuals, numbers
represent the order of infection chronologically and the arrows
show the direction of transmission. b Phylogenetic tree when all
individuals in the outbreak are sampled. Transmission pairs are not
necessarily paired on the tree as they may not be the most similar
within the context of the outbreak. For example, if we assume that 1
had a long, chronic TB infection then because of the amount of
diversity that can accumulate over time it is possible for the genomes
from 2 and 3 to be more closely related to each other than to the
genome from 1, even though 1 infected them both. This is because
the strain that was sampled from 1 has evolved since 1 infected 2 and
3. While rejecting pairs not adjacent on the phylogenetic tree seems
sound when sampling is sparse (as transmission pairs would then be
relatively rare in the dataset and closer in phylogenetic distance than
typical pairs of tips), when sampling is dense (as is desirable in
epidemiological investigations). c Individuals 2, 3, 4 and 8 have not
been sampled for the reconstruction of this tree. This makes the
distances between the average pair of tips in the tree larger, highlights
the close phylogenetic distance between 6 and 7 and (correctly)
suggests transmission occurred between these individuals

Hatherell et al. BMC Medicine  (2016) 14:21 Page 9 of 13



Strengths and limitations
The systematic nature of this review has allowed us to
assess available methods for using WGS as a tool for un-
derstanding TB epidemiology in detail. However, due to
the sometimes small number of studies and the variable
approaches to generating sequencing data, quantitative
synthesis was not possible. Standard epidemiological
quality criteria were often not applicable due to the na-
ture of the investigations.

Comparison with recent reviews
Recent reviews of WGS for TB have highlighted its use
for outbreaks as well as for identifying drug resistance-
conferring mutations or reconstructing the evolutionary
history of M.tb [71, 72]. Kao et al. [1] and Croucher et
al. [73] looked at WGS for pathogen outbreak investiga-
tions generally, while Takiff et al. [72], Le et al. [74] and
Walker et al. [5] reviewed the use of WGS for outbreak in-
vestigations of tuberculosis. Our review extends the com-
mentary on the subjects mentioned by these reviews, such
as SNP thresholds, relapse versus re-infection and the ac-
cumulation of SNPs for determining direction of trans-
mission, and focusses more on the limitations of these
methods, as opposed to reviewing the outcomes and their
meaning for tuberculosis transmission.

Conclusions
Applications of WGS for TB have been similar to other
infectious diseases; for example, Bayesian inference has
been used to infer SARS transmission networks from
WGS [8] and the topology of phylogenetic trees has
been used to infer outbreaks of Staphylococcus aureus
[9]. However, because TB is a complex and variable dis-
ease, inference of transmission from WGS data for M.tb
is more difficult. For example, because the latency period
is so unpredictable (lasting from weeks to decades) there

is uncertainty in ascertaining when an individual was in-
fected and thus the extent to which the infecting strain
might have differed from the sampled strain, making in-
ferences of transmission difficult. This is exacerbated by
the fact that we have had very little insight into the
transmission bottleneck (the number of bacteria trans-
mitted during an infection event), and thus the amount
of diversity which may have been transmitted. This has
been researched more successfully using WGS for sev-
eral non-airborne infections (e.g. hepatitis C virus [75]).
The need for culturing also provides a barrier to the use
of WGS as a rapid public health diagnostic for M.tb, as
the bacterium is particularly slow-growing.
The WGS studies reviewed here have revealed several

findings important for understanding transmission of
TB. Diversity plays a significant role in inference of
transmission; the finding that there can be large num-
bers of SNPs between cross-sectional samples from a pa-
tient has made it clear that we should be careful when
interpreting WGS data. In contrast, many studies have
shown that transmission can occur without any diversity
arising, which makes it important for us to use other
sources of data when trying to build a network of trans-
mission. By using WGS as well as more traditional
typing [68], studies have been able to identify superinfec-
tion [30], indicating that there may be limited cross-
immunity between strains of M.tb. There have also been
multiple comparisons of MIRU-VNTR and WGS for de-
fining outbreaks. This has revealed that the two markers
are not always entirely consistent; for example, there
were recorded instances of MIRU-VNTR differences be-
tween isolates without SNPs and vice-versa [30].
We have highlighted the limitations and implications

of using different approaches for the analysis of WGS
data to investigate transmission, and summarise our
findings and recommendations in Table 4. Several

Table 4 Findings and recommendations

Over-arching findings from included papers Recommendations

Suggested SNP thresholds for evidence of transmission are
heterogeneous and sensitive to the finding of epidemiological links,
SNP calling protocols and culturing/sampling, thus potentially are not
transferrable between settings and/or studies

When setting study-specific SNP thresholds consider the time between
samples, mutation rate, evolutionary pressure the strain may have
been subjected to, and the endemicity of strains. Consider alternative
approaches for determining transmission, including Bayesian approaches

The distinction between relapse and re-infection for repeated instances
of TB disease has been made empirically (by examining the distribution
of SNP distances between the initially infecting and subsequently
infecting strains)

While existing thresholds appear adequate for clinical trials, consideration
of epidemiological and clinical data is important, as well as a better idea
of the within-host mutation rate when more accurate classification is
required

The lack of diversity within M.tb complicates the use of WGS for inferring
transmission patterns (17/25 studies found identical samples). Recent
case studies show that there may be more diversity that is not identified
by commonly used WGS methods

Deep sequencing, multiple samples and looking at shared minor variants
(mutations present at low frequencies) will enhance detection of
diversity. Epidemiological data, and consideration of associated
uncertainty due to missing contact information, will also be necessary

Examining resistance-conferring mutations shared by phylogenetic
clusters is a common method for identifying transmission of drug-
resistant strains. However, phylogenetic clusters do not necessarily
correspond to transmission clusters

Reconstruction of the transmission tree followed by an examination of
the drug resistance patterns between linked individuals may be more
appropriate
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conclusions can be drawn from this review. Firstly, SNP
thresholds have a wide range of applications; however,
the genetic distances between sequences should be con-
sidered in light of local TB incidence, strain diversity,
the time between the samples, potential hitchhiking and
homoplasy. Consideration of factors that affect mutation
rates is essential. Secondly, epidemiological data and
clinical history remain critical to outbreak investigations,
especially when sequence data lacks variation. Finally,
knowing how diversity arises will help resolve transmis-
sion. Better characterisation of microevolution and
mixed infection will require better sampling, deeper se-
quencing and investigation of the within-host mutation
rate.

Additional files

Additional file 1: Appendix A. Search strategies for databases.
(DOCX 28 kb)

Additional file 2: Appendix B. Pre-determined data items for
extraction. (DOCX 16 kb)

Additional file 3: Appendix C. Quality assessment of studies.
(DOCX 22 kb)

Additional file 4: Appendix D. Included studies and extracted data.
(DOCX 32 kb)

Additional file 5: Appendix E. Factors affecting the number of
polymorphisms detected in sequences. (DOCX 18 kb)

Abbreviations
M.tb: Mycobacterium tuberculosis; MDR: multi-drug-resistant; MIRU-
VNTR: mycobacterial interspersed repetitive units-variable number tandem
repeats; PRISMA: Preferred Reporting Items for Systematic Reviews and
Meta-Analyses; SNP: single nucleotide polymorphism; TB: tuberculosis;
WGS: whole genome sequencing.

Competing interests
Between 2013 and 2015, HRS acted as an external consultant to deliver a
clinical audit of multi-drug-resistant tuberculosis services in various Eastern
European countries for Otsuka Pharmaceutical (Tokyo, Japan; makers of the
anti-tuberculosis drug delamanid), during which time HRS received consultancy
fees, travel and subsistence. CJ was also paid consultancy fees between 2014
and 2015. This study is completely independent of the aforementioned work
and not related to the topic. The other authors declare no conflicts of interest.

Authors’ contributions
H-AH independently screened the articles, extracted data and drafted the
article. IA, CC and CJ conceived the report and helped to write and draft the
article. JRW independently screened the articles. HRS settled discrepancies
between H-AH and JRW for inclusion of articles, extracted data and helped
to write and draft the article. All authors read and approved the final version
of the article submitted for publication.

Funding
H-AH is funded by an Engineering and Physical Sciences Research Council
(EPSRC) PhD studentship. CC is funded by the EPSRC (EP/K026003/1). HRS is
supported by the National Institute for Health Research (NIHR) Post Doctoral
Fellowship (PDF-2014-07-008). CJ is funded by the NIHR and IA is funded
both by the NIHR and the Medical Research Council (MRC). The views
expressed in this publication are those of the authors and not necessarily
those of the National Health Service (NHS), the NIHR or the Department of
Health (DH). JRW is funded by the University College London IMPACT
scheme. No funding bodies were involved in the writing of the manuscript
or in the decision to submit the manuscript for publication.

Author details
1CoMPLEX, University College London, London WC1E 6BT, UK. 2Centre for
Infectious Disease Epidemiology, Infection and Population Health, University
College London, London WC1E 6JB, UK. 3Department of Mathematics,
Imperial College London, London SW7 2AZ, UK. 4Medical Research Council
Clinical Trials Unit, 125 Kingsway, London WC2B 6NH, UK.

Received: 27 November 2015 Accepted: 23 January 2016

References
1. Kao RR, Haydon DT, Lycett SJ, Murcia PR. Supersize me: how whole-genome

sequencing and big data are transforming epidemiology. Trends Microbiol.
2014;22(5):282–91.

2. Grad YH, Lipsitch M. Epidemiologic data and pathogen genome sequences:
a powerful synergy for public health. Genome Biol. 2014;15(11):538.

3. Sreevatsan S, Pan X, Stockbauer KE, Connell ND, Kreiswirth BN, Whittam TS,
et al. Restricted structural gene polymorphism in the Mycobacterium
tuberculosis complex indicates evolutionarily recent global dissemination.
Proc Natl Acad Sci U S A. 1997;94(18):9869–74.

4. Ford C, Yusim K, Ioerger T, Feng S, Chase M, Greene M, et al.
Mycobacterium tuberculosis - heterogeneity revealed through whole
genome sequencing. Tuberculosis. 2012;92(3):194–201.

5. Walker TM, Monk P, Smith EG, Peto TE. Contact investigations for outbreaks
of Mycobacterium tuberculosis: advances through whole genome
sequencing. Clin Microbiol Infect. 2013;19(9):796–802.

6. Robinson ER, Walker TM, Pallen MJ. Genomics and outbreak investigation:
from sequence to consequence. Genome Med. 2013;5(4):36.

7. Wilson DJ. Insights from genomics into bacterial pathogen populations.
PLoS Pathog. 2012;8(9):e1002874.

8. Jombart T, Cori A, Didelot X, Cauchemez S, Fraser C, Ferguson N. Bayesian
reconstruction of disease outbreaks by combining epidemiologic and
genomic data. PLoS Comput Biol. 2014;10(1):e1003457.

9. Köser CU, Holden MTG, Ellington MJ, Cartwright EJP, Brown NM, Ogilvy-
Stuart AL, et al. Rapid whole-genome sequencing for investigation of a
neonatal MRSA outbreak. N Engl J Med. 2012;366(24):2267–75.

10. Knetsch CW, Connor TR, Mutreja A, van Dorp SM, Sanders IM, Browne HP, et
al. Whole genome sequencing reveals potential spread of Clostridium
difficile between humans and farm animals in the Netherlands, 2002 to
2011. Euro Surveill. 2014;19(45):20954.

11. Field N, Cohen T, Struelens MJ, Palm D, Cookson B, Glynn JR, et al.
Strengthening the Reporting of Molecular Epidemiology for Infectious
Diseases (STROME-ID): an extension of the STROBE statement. Lancet Infect
Dis. 2014;14(4):341–52.

12. Gardy JL, Johnston JC, Ho Sui SJ, Cook VJ, Shah L, Brodkin E, et al. Whole-
genome sequencing and social-network analysis of a tuberculosis outbreak.
N Engl J Med. 2011;364(8):730–9.

13. Mehaffy C, Guthrie JL, Alexander DC, Stuart R, Rea E, Jamieson FB.
Marked microevolution of a unique Mycobacterium tuberculosis strain
in 17 years of ongoing transmission in a high risk population. PLoS
One. 2014;9(11):e112928.

14. Roetzer A, Diel R, Kohl TA, Ruckert C, Nubel U, Blom J, et al. Whole genome
sequencing versus traditional genotyping for investigation of a Mycobacterium
tuberculosis outbreak: a longitudinal molecular epidemiological study. PLoS
Med. 2013;10(2):e1001387.

15. Bryant JM, Schurch AC, van Deutekom H, Harris SR, de Beer JL, de Jager V,
et al. Inferring patient to patient transmission of Mycobacterium tuberculosis
from whole genome sequencing data. BMC Infect Dis. 2013;13:110.

16. Luo T, Yang C, Peng Y, Lu L, Sun G, Wu J, et al. Whole-genome sequencing
to detect recent transmission of Mycobacterium tuberculosis in settings
with a high burden of tuberculosis. Tuberculosis. 2014;94(4):434–40.

17. Lee RS, Radomski N, Proulx JF, Manry J, McIntosh F, Desjardins F, et al.
Re-emergence and amplification of tuberculosis in the Canadian arctic.
J Infect Dis. 2015;211(12):1905–14.

18. Guerra-Assunção JA, Crampin AC, Houben R, Mzembe T, Mallard K, Coll F, et
al. Large-scale whole genome sequencing of M-tuberculosis provides
insights into transmission in a high prevalence area. eLife. 2015;4.
doi:10.7554/eLife.05166.

19. Witney AA, Gould KA, Arnold A, Coleman D, Delgado R, Dhillon J, et al.
Clinical application of whole-genome sequencing to inform treatment for
multidrug-resistant tuberculosis cases. J Clin Microbiol. 2015;53(5):1473–83.

Hatherell et al. BMC Medicine  (2016) 14:21 Page 11 of 13

dx.doi.org/10.1186/s12916-016-0566-x
dx.doi.org/10.1186/s12916-016-0566-x
dx.doi.org/10.1186/s12916-016-0566-x
dx.doi.org/10.1186/s12916-016-0566-x
dx.doi.org/10.1186/s12916-016-0566-x
http://dx.doi.org/10.7554/eLife.05166


20. Martin Williams O, Abeel T, Casali N, Cohen K, Pym AS, Mungall SB, et al.
Fatal nosocomial MDR TB identified through routine genetic analysis and
whole-genome sequencing. Emerg Infect Dis. 2015;21(6):1082–4.

21. Walker TM, Ip CL, Harrell RH, Evans JT, Kapatai G, Dedicoat MJ, et al. Whole-
genome sequencing to delineate Mycobacterium tuberculosis outbreaks: a
retrospective observational study. Lancet Infect Dis. 2013;13(2):137–46.

22. Walker TM, Lalor MK, Broda A, Ortega LS, Morgan M, Parker L, et al.
Assessment of Mycobacterium tuberculosis transmission in Oxfordshire, UK,
2007–12, with whole pathogen genome sequences: an observational study.
Lancet Respir Med. 2014;2(4):285–92.

23. Clark TG, Mallard K, Coll F, Preston M, Assefa S, Harris D, et al. Elucidating
emergence and transmission of multidrug-resistant tuberculosis in
treatment experienced patients by whole genome sequencing. PLoS One.
2013;8(12):e83012.

24. Schürch AC, Kremer K, Daviena O, Kiers A, Boeree MJ, Siezen RJ, et al. High-
resolution typing by integration of genome sequencing data in a large
tuberculosis cluster. J Clin Microbiol. 2010;48(9):3403–6.

25. Didelot X, Gardy J, Colijn C. Bayesian inference of infectious disease
transmission from whole-genome sequence data. Mol Biol Evol.
2014;31(7):1869–79.

26. Kato-Maeda M, Ho C, Passarelli B, Banaei N, Grinsdale J, Flores L, et al.
Use of whole genome sequencing to determine the microevolution of
Mycobacterium tuberculosis during an outbreak. PLoS One. 2013;8(3):e58235.

27. Smit PW, Vasankari T, Aaltonen H, Haanpera M, Casali N, Marttila H, et al.
Enhanced tuberculosis outbreak investigation using whole genome
sequencing and IGRA. Eur Respir J. 2015;45(1):276–9.

28. Stucki D, Ballif M, Bodmer T, Coscolla M, Maurer AM, Droz S, et al. Tracking a
tuberculosis outbreak over 21 years: strain-specific single-nucleotide
polymorphism typing combined with targeted whole-genome sequencing.
J Infect Dis. 2015;211(8):1306–16.

29. Guerra-Assunção JA, Houben RM, Crampin AC, Mzembe T, Mallard K, Coll F,
et al. Recurrence due to relapse or reinfection with Mycobacterium
tuberculosis: a whole-genome sequencing approach in a large, population-
based cohort with a high HIV infection prevalence and active follow-up.
J Infect Dis. 2015;211(7):1154–63.

30. Bryant JM, Harris SR, Parkhill J, Dawson R, Diacon AH, van Helden P, et al.
Whole-genome sequencing to establish relapse or re-infection with
Mycobacterium tuberculosis: a retrospective observational study. Lancet
Respir Med. 2013;1(10):786–92.

31. Pérez-Lago L, Comas I, Navarro Y, Gonzalez-Candelas F, Herranz M, Bouza E,
et al. Whole genome sequencing analysis of intrapatient microevolution in
Mycobacterium tuberculosis: potential impact on the inference of
tuberculosis transmission. J Infect Dis. 2014;209(1):98–108.

32. Casali N, Nikolayevskyy V, Balabanova Y, Harris SR, Ignatyeva O, Kontsevaya I,
et al. Evolution and transmission of drug-resistant tuberculosis in a Russian
population. Nat Genet. 2014;46(3):279–86.

33. Ioerger TR, Feng Y, Chen X, Dobos KM, Victor TC, Streicher EM, et al.
The non-clonality of drug resistance in Beijing-genotype isolates of
Mycobacterium tuberculosis from the Western Cape of South Africa.
BMC Genomics. 2010;11(1):670.

34. Lanzas F, Karakousis PC, Sacchettini JC, Ioerger TR. Multidrug-resistant
tuberculosis in panama is driven by clonal expansion of a multidrug-
resistant mycobacterium tuberculosis strain related to the KZN extensively
drug-resistant m. tuberculosis strain from South Africa. J Clin Microbiol.
2013;51(10):3277–85.

35. Regmi SM, Chaiprasert A, Kulawonganunchai S, Tongsima S, Coker OO,
Prammananan T, et al. Whole genome sequence analysis of multidrug-
resistant Mycobacterium tuberculosis Beijing isolates from an outbreak in
Thailand. Mol Genet Genomics. 2015;290(5):1933–41.

36. Ocheretina O, Shen L, Escuyer VE, Mabou MM, Royal-Mardi G, Collins SE,
et al. Whole genome sequencing investigation of a tuberculosis outbreak in
Port-au-Prince, Haiti caused by a strain with a "low-level" rpoB mutation
L511P - insights into a mechanism of resistance escalation. PLoS One.
2015;10(6):e0129207.

37. Niemann S, Koser CU, Gagneux S, Plinke C, Homolka S, Bignell H, et al.
Genomic diversity among drug sensitive and multidrug resistant isolates of
Mycobacterium tuberculosis with identical DNA fingerprints. PLoS One.
2009;4(10):e7407.

38. Ypma RJF, van Ballegooijen WM, Wallinga J. Relating phylogenetic trees
to transmission trees of infectious disease outbreaks. Genetics.
2013;195(3):1055–62.

39. Lambert ML, Hasker E, Van Deun A, Roberfroid D, Boelaert M, Van der Stuyft P.
Recurrence in tuberculosis: relapse or reinfection? Lancet Infect Dis.
2003;3(5):282–7.

40. Gillespie SH, Crook AM, McHugh TD, Mendel CM, Meredith SK, Murray SR, et
al. Four-month moxifloxacin-based regimens for drug-sensitive tuberculosis.
N Engl J Med. 2014;371(17):1577–87.

41. Wlodarska M, Johnston JC, Gardy JL, Tang P. A microbiological revolution
meets an ancient disease: improving the management of tuberculosis with
genomics. Clin Microbiol Rev. 2015;28(2):523–39.

42. Kato-Maeda M, Metcalfe JZ, Flores L. Genotyping of Mycobacterium
tuberculosis: application in epidemiologic studies. Future Microbiol.
2011;6(2):203–16.

43. Drobniewski F, Nikolayevskyy V, Maxeiner H, Balabanova Y, Casali N,
Kontsevaya I, et al. Rapid diagnostics of tuberculosis and drug resistance in
the industrialized world: clinical and public health benefits and barriers to
implementation. BMC Med. 2013;11(1):190.

44. Pabinger S, Dander A, Fischer M, Snajder R, Sperk M, Efremova M, et al. A
survey of tools for variant analysis of next-generation genome sequencing
data. Brief Bioinform. 2014;15(2):256–78.

45. Pirooznia M, Kramer M, Parla J, Goes FS, Potash JB, McCombie WR, et al.
Validation and assessment of variant calling pipelines for next-generation
sequencing. Hum Genomics. 2014;8(1):14–4.

46. Zhang J, Chiodini R, Badr A, Zhang G. The impact of next-generation
sequencing on genomics. J Genet Genomics. 2011;38(3):95–109.

47. Quail M, Smith M, Coupland P, Otto T, Harris S, Connor T, et al. A tale of three
next generation sequencing platforms: comparison of Ion Torrent, Pacific
Biosciences and Illumina MiSeq sequencers. BMC Genomics. 2012;13:341.

48. Fitzpatrick LK, Hardacker JA, Heirendt W, Agerton T, Streicher A, Melnyk H,
et al. A preventable outbreak of tuberculosis investigated through an
intricate social network. Clin Infect Dis. 2001;33(11):1801–6.

49. Worby CJ, Chang HH, Hanage WP, Lipsitch M. The distribution of pairwise
genetic distances: a tool for investigating disease transmission. Genetics.
2014;198(4):1395–404.

50. Barton NH. Genetic hitchhiking. Philos Trans R Soc Lond B Biol Sci.
2000;355(1403):1553–62.

51. Al-Hajoj SA, Akkerman O, Parwati I, al-Gamdi S, Rahim Z, van Soolingen D,
et al. Microevolution of Mycobacterium tuberculosis in a tuberculosis
patient. J Clin Microbiol. 2010;48(10):3813–6.

52. Eldholm V, Norheim G, von der Lippe B, Kinander W, Dahle UR, Caugant DA,
et al. Evolution of extensively drug-resistant Mycobacterium tuberculosis
from a susceptible ancestor in a single patient. Genome Biol.
2014;15(11):490.

53. Sun G, Luo T, Yang C, Dong X, Li J, Zhu Y, et al. Dynamic population
changes in Mycobacterium tuberculosis during acquisition and fixation of
drug resistance in patients. J Infect Dis. 2012;206(11):1724–33.

54. Merker M, Kohl TA, Roetzer A, Truebe L, Richter E, Rüsch-Gerdes S, et al.
Whole genome sequencing reveals complex evolution patterns of
multidrug-resistant Mycobacterium tuberculosis Beijing strains in patients.
PLoS One. 2013;8(12):e82551.

55. Saunders NJ, Trivedi U, Thomson M, Doig C, Laurenson IF, Blaxter ML.
Deep resequencing of serial sputum isolates of Mycobacterium
tuberculosis during therapeutic failure due to poor compliance reveals
stepwise mutation of key resistance genes on an otherwise stable
genetic background. J Infect. 2011;62(3):212–7.

56. Rad ME, Bifani P, Martin C, Kremer K, Samper S, Rauzier J, et al. Mutations in
putative mutator genes of Mycobacterium tuberculosis strains of the
W-Beijing family. Emerg Infect Dis. 2003;9(7):838–45.

57. Colangeli R, Arcus VL, Cursons RT, Ruthe A, Karalus N, Coley K, et al. Whole
genome sequencing of Mycobacterium tuberculosis reveals slow growth
and low mutation rates during latent infections in humans. PLoS One.
2014;9(3):e91024.

58. Ford CB, Lin PL, Chase MR, Shah RR, Iartchouk O, Galagan J, et al. Use of
whole genome sequencing to estimate the mutation rate of Mycobacterium
tuberculosis during latent infection. Nat Genet. 2011;43(5):482–6.

59. Jombart T, Eggo RM, Dodd PJ, Balloux F. Reconstructing disease outbreaks
from genetic data: a graph approach. Heredity (Edinb). 2011;106(2):383–90.

60. Liu XM, Gutacker MM, Musser JM, Fu YX. Evidence for recombination in
Mycobacterium tuberculosis. J Bacteriol. 2006;188(23):8169–77.

61. Liu Q, Guo Y, Li J, Long JR, Zhang B, Shyr Y. Steps to ensure accuracy in
genotype and SNP calling from Illumina sequencing data. BMC Genomics.
2012;13(8):S8.

Hatherell et al. BMC Medicine  (2016) 14:21 Page 12 of 13



62. Comas I, Homolka S, Niemann S, Gagneux S. Genotyping of genetically
monomorphic bacteria: DNA sequencing in Mycobacterium tuberculosis
highlights the limitations of current methodologies. PLoS One.
2009;4(11):e7815.

63. David HL. Probability distribution of drug-resistant mutants in unselected
populations of Mycobacterium tuberculosis. Appl Microbiol. 1970;20(5):810–4.

64. Kaplan G, Post FA, Moreira AL, Wainwright H, Kreiswirth BN, Tanverdi M, et
al. Mycobacterium tuberculosis growth at the cavity surface: a
microenvironment with failed immunity. Infect Immun. 2003;71(12):7099–108.

65. van den Berg RH. Communicable medical diseases: a holistic and social
medicine perspective for healthcare providers. Bloomington, IN: Balboa
Press; 2014.

66. Worby CJ, Lipsitch M, Hanage WP. Shared genomic variants: identification of
transmission routes using pathogen deep sequence data. bioRxiv. 2015.
doi:http://dx.doi.org/10.1101/032458.

67. Warner DF, Koch A, Mizrahi V. Diversity and disease pathogenesis in
Mycobacterium tuberculosis. Trends Microbiol. 2015;23(1):14–21.

68. Cohen T, van Helden PD, Wilson D, Colijn C, McLaughlin MM, Abubakar I, et al.
Mixed-strain mycobacterium tuberculosis infections and the implications for
tuberculosis treatment and control. Clin Microbiol Rev. 2012;25(4):708–19.

69. Black PA, de Vos M, Louw GE, van der Merwe RG, Dippenaar A,
Streicher EM, et al. Whole genome sequencing reveals genomic
heterogeneity and antibiotic purification in Mycobacterium tuberculosis
isolates. BMC Genomics. 2015;16(1):857.

70. Liu Q, Via LE, Luo T, Liang L, Liu X, Wu S, et al. Within patient microevolution of
Mycobacterium tuberculosis correlates with heterogeneous responses to
treatment. Sci Rep. 2015;5:17507.

71. Galagan JE. Genomic insights into tuberculosis. Nat Rev Genet.
2014;15(5):307–20.

72. Takiff HE, Feo O. Clinical value of whole-genome sequencing of
Mycobacterium tuberculosis. Lancet Infect Dis. 2015;15(9):1077–90.

73. Croucher NJ, Didelot X. The application of genomics to tracing bacterial
pathogen transmission. Curr Opin Microbiol. 2015;23:62–7.

74. Le VT, Diep BA. Selected insights from application of whole-genome
sequencing for outbreak investigations. Curr Opin Crit Care. 2013;19(5):432–9.

75. Bull RA, Luciani F, McElroy K, Gaudieri S, Pham ST, Chopra A, et al.
Sequential bottlenecks drive viral evolution in early acute hepatitis C virus
infection. PLoS Pathog. 2011;7(9):e1002243.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

Hatherell et al. BMC Medicine  (2016) 14:21 Page 13 of 13

http://dx.doi.org/10.1101/032458

	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Search strategy and study selection
	Data extraction
	Data synthesis and quality assessment
	Protocol and registration

	Results
	Confirmation of transmission
	Direction
	Recurrences
	Within-host diversity
	Drug resistance
	Quality of studies

	Discussion
	Main findings: implications of analytical approaches on WGS inferences
	Strengths and limitations
	Comparison with recent reviews

	Conclusions
	Additional files
	Abbreviations
	Competing interests
	Authors’ contributions
	Funding
	Author details
	References



