6,405 research outputs found

    Buoyancy studies in natural communities of square gas-vacuolate archaea in saltern crystallizer ponds

    Get PDF
    BACKGROUND: Possession of gas vesicles is generally considered to be advantageous to halophilic archaea: the vesicles are assumed to enable the cells to float, and thus reach high oxygen concentrations at the surface of the brine. RESULTS: We studied the possible ecological advantage of gas vesicles in a dense community of flat square extremely halophilic archaea in the saltern crystallizer ponds of Eilat, Israel. We found that in this environment, the cells' content of gas vesicles was insufficient to provide positive buoyancy. Instead, sinking/floating velocities were too low to permit vertical redistribution. CONCLUSION: The hypothesis that the gas vesicles enable the square archaea to float to the surface of the brines in which they live was not supported by experimental evidence. Presence of the vesicles, which are mainly located close to the cell periphery, may provide an advantage as they may aid the cells to position themselves parallel to the surface, thereby increasing the efficiency of light harvesting by the retinal pigments in the membrane

    Equation of state for dense supernova matter

    Full text link
    We provide an equation of state for high density supernova matter by applying a momentum-dependent effective interaction. We focus on the study of the equation of state of high-density and high-temperature nuclear matter containing leptons (electrons and neutrinos) under the chemical equilibrium condition. The conditions of charge neutrality and equilibrium under β\beta-decay process lead first to the evaluation of the lepton fractions and afterwards the evaluation of internal energy, pressure, entropy and in total to the equation of state of hot nuclear matter for various isothermal cases. Thermal effects on the properties and equation of state of nuclear matter are evaluated and analyzed in the framework of the proposed effective interaction model. Since supernova matter is characterized by a constant entropy we also present the thermodynamic properties for isentropic case. Special attention is dedicated to the study of the contribution of the components of β\beta-stable nuclear matter to the entropy per particle, a quantity of great interest for the study of structure and collapse of supernova.Comment: 23 pages, 15 figure

    On zero sets in the Dirichlet space

    Full text link
    We study the zeros sets of functions in the Dirichlet space. Using Carleson formula for Dirichlet integral, we obtain some new families of zero sets. We also show that any closed subset of E \subset \TT with logarithmic capacity zero is the accumulation points of the zeros of a function in the Dirichlet space. The zeros satisfy a growth restriction which depends on EE.Comment: Journal of Geometric Analysis (2011

    Quantum properties of the parametric amplifier with and without pumping field fluctuations

    Full text link
    The parametric amplifier with and without the pumping fluctuations of coupling function is considered when the fields are initially prepared in coherent light. The pumping fluctuations are assumed to be normally distributed with time-dependent variance. The effects of antibunching and anticorrelation of photons on the photon distribution, correlation between modes and factorial moments are demonstrated. A possible enhancement of photon antibunching for certain values of initial mean photon numbers is shown and discussed. We have shown also that new states (called modified squeezed vacuum states or even thermal states) can be generated from such an interaction. Further, we have demonstrated that the sum photon-number distribution can exhibit collapses and revivals in the photon-number domain somewhat similar to those known in the Jaynes-Cummings model.Comment: 17 pages, 6figure

    Plasma actuator: influence of dielectric surface temperature

    Get PDF
    Plasma actuators have become the topic of interest of many researchers for the purpose of flow control. They have the advantage of manipulating the flow without the need for any moving parts, a small surface profile which does not disturb the free stream flow, and the ability to switch them on or off depending on the particular situation (active flow control). Due to these characteristics they are becoming very popular for flow control over aircraft wings. The objective of the current study is to examine the effect of the actuator surface temperature on its performance. This is an important topic to understand when dealing with real life aircraft equipped with plasma actuators. The temperature variations encountered during a flight envelope may have adverse effects in actuator performance. A peltier heater along with dry ice are used to alter the actuator temperature, while particle image velocimetry (PIV) is utilised to analyse the flow field. The results show a significant change in the induced flow field by the actuator as the surface temperature is varied. It is found that for a constant peak-to-peak voltage the maximum velocity produced by the actuator depends directly on the dielectric surface temperature. The findings suggest that by changing the actuator temperature the performance can be maintained or even altered at different environmental conditions

    Density Profile Asymptotes at the Centre of Dark Matter Halos

    Full text link
    For the spherical symmetric case, all quantities describing the relaxed dark matter halo can be expressed as functions of the gravitational potential Φ\Phi. Decomposing the radial velocity dispersion σr\sigma_r with respect to Φ\Phi at very large and very small radial distances the possible asymptotic behavior for the density and velocity profiles can be obtained. If reasonable boundary conditions are posed such as a finite halo mass and force-free halo centre the asymptotic density profiles at the centre should be much less steep than the profiles obtained within numerical simulations. In particular cases profiles like Plummer's model are obtained. The reasons of that seeming discrepancy with respect to the results of N-body simulations are discussed.Comment: Accepted for publication in Astronomy & Astrophysics, LaTeX, 7 pages, 2 figure

    Plant Extracts as Ultraviolet Radiation Protectants for the Beet Armyworm (Lepidoptera: Noctuidae) Nucleopolyhedrovirus: Screening of Extracts 1

    Get PDF
    ABSTRACT Sixty-seven plant-derived extracts were tested as ultraviolet (UV) protectants for the nucleopolyhedrovirus (SeMNPV) of the beet armyworm, Spodoptera exigua (Hü bner) (Lepidoptera: Noctuidae). In the initial laboratory screening experiment, 25 of the 67 extracts provided protection following UVA/UVB irradiation for 30 min. Fifteen of these 25 extracts provided good UV protection when they were subjected to a more severe UV treatment of UVB/UVB irradiation for 30 min. Four of these 15 extracts (kudzu, peppermint, skullcap, and thyme) provided excellent UV protection for SeMNPVwhen they were irradiated with an even more stringent UV regime of UVB/UVB for 300 min. These findings indicate that these plant extracts may be useful UV protectants for the SeNPV and they should be investigated further to obtain more efficacious formulations for the control of agriculturally important insect pests

    The feeder system of the Toba supervolcano from the slab to the shallow reservoir

    Get PDF
    The Toba Caldera has been the site of several large explosive eruptions in the recent geological past, including the world’s largest Pleistocene eruption 74,000 years ago. The major cause of this particular behaviour may be the subduction of the fluid-rich Investigator Fracture Zone directly beneath the continental crust of Sumatra and possible tear of the slab. Here we show a new seismic tomography model, which clearly reveals a complex multilevel plumbing system beneath Toba. Large amounts of volatiles originate in the subducting slab at a depth of ∼150 km, migrate upward and cause active melting in the mantle wedge. The volatile-rich basic magmas accumulate at the base of the crust in a ∼50,000 km3 reservoir. The overheated volatiles continue ascending through the crust and cause melting of the upper crust rocks. This leads to the formation of a shallow crustal reservoir that is directly responsible for the supereruptions
    corecore