275 research outputs found

    Transcritical flow of a stratified fluid over topography: analysis of the forced Gardner equation

    Get PDF
    Transcritical flow of a stratified fluid past a broad localised topographic obstacle is studied analytically in the framework of the forced extended Korteweg--de Vries (eKdV), or Gardner, equation. We consider both possible signs for the cubic nonlinear term in the Gardner equation corresponding to different fluid density stratification profiles. We identify the range of the input parameters: the oncoming flow speed (the Froude number) and the topographic amplitude, for which the obstacle supports a stationary localised hydraulic transition from the subcritical flow upstream to the supercritical flow downstream. Such a localised transcritical flow is resolved back into the equilibrium flow state away from the obstacle with the aid of unsteady coherent nonlinear wave structures propagating upstream and downstream. Along with the regular, cnoidal undular bores occurring in the analogous problem for the single-layer flow modeled by the forced KdV equation, the transcritical internal wave flows support a diverse family of upstream and downstream wave structures, including solibores, rarefaction waves, reversed and trigonometric undular bores, which we describe using the recent development of the nonlinear modulation theory for the (unforced) Gardner equation. The predictions of the developed analytic construction are confirmed by direct numerical simulations of the forced Gardner equation for a broad range of input parameters.Comment: 34 pages, 24 figure

    Stationary wave patterns generated by an impurity moving with supersonic velocity through a Bose-Einstein condensate

    Get PDF
    Formation of stationary 3D wave patterns generated by a small point-like impurity moving through a Bose-Einstein condensate with supersonic velocity is studied. Asymptotic formulae for a stationary far-field density distribution are obtained. Comparison with three-dimensional numerical simulations demonstrates that these formulae are accurate enough already at distances from the obstacle equal to a few wavelengths.Comment: 7 pages, 3 figure

    The Alveolate Perkinsus marinus: Biological Insights from EST Gene Discovery

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Perkinsus marinus</it>, a protozoan parasite of the eastern oyster <it>Crassostrea virginica</it>, has devastated natural and farmed oyster populations along the Atlantic and Gulf coasts of the United States. It is classified as a member of the Perkinsozoa, a recently established phylum considered close to the ancestor of ciliates, dinoflagellates, and apicomplexans, and a key taxon for understanding unique adaptations (<it>e.g</it>. parasitism) within the Alveolata. Despite intense parasite pressure, no disease-resistant oysters have been identified and no effective therapies have been developed to date.</p> <p>Results</p> <p>To gain insight into the biological basis of the parasite's virulence and pathogenesis mechanisms, and to identify genes encoding potential targets for intervention, we generated >31,000 5' expressed sequence tags (ESTs) derived from four trophozoite libraries generated from two <it>P. marinus </it>strains. Trimming and clustering of the sequence tags yielded 7,863 unique sequences, some of which carry a spliced leader. Similarity searches revealed that 55% of these had hits in protein sequence databases, of which 1,729 had their best hit with proteins from the chromalveolates (E-value ≤ 1e-5). Some sequences are similar to those proven to be targets for effective intervention in other protozoan parasites, and include not only proteases, antioxidant enzymes, and heat shock proteins, but also those associated with relict plastids, such as acetyl-CoA carboxylase and methyl erythrithol phosphate pathway components, and those involved in glycan assembly, protein folding/secretion, and parasite-host interactions.</p> <p>Conclusions</p> <p>Our transcriptome analysis of <it>P. marinus</it>, the first for any member of the Perkinsozoa, contributes new insight into its biology and taxonomic position. It provides a very informative, albeit preliminary, glimpse into the expression of genes encoding functionally relevant proteins as potential targets for chemotherapy, and evidence for the presence of a relict plastid. Further, although <it>P. marinus </it>sequences display significant similarity to those from both apicomplexans and dinoflagellates, the presence of trans-spliced transcripts confirms the previously established affinities with the latter. The EST analysis reported herein, together with the recently completed sequence of the <it>P. marinus </it>genome and the development of transfection methodology, should result in improved intervention strategies against dermo disease.</p

    Nardosinane-Type Sesquiterpenoids from the Formosan Soft Coral Paralemnalia thyrsoides

    Get PDF
    Five new nardosinane-type sesquiterpenoids, paralemnolins Q–U (1–5), along with three known compounds (6–8), were isolated from the Formosan soft coral Paralemnalia thyrsoides. The structures of new metabolites were elucidated on the basis of extensive spectroscopic methods, and the absolute configuration of 1 was determined by the application of Mosher’s method on 1. Among these metabolites, 1 and 3 are rarely found nardosinane-type sesquiterpenoids, possessing novel polycyclic structures. Compounds 1, 3, 6 and 7 were found to possess neuroprotective activity

    BSRS-5 (5-item Brief Symptom Rating Scale) scores affect every aspect of quality of life measured by WHOQOL-BREF in healthy workers

    Get PDF
    This study aims to evaluate and quantify the possible effect of psychological symptoms on healthy workers' quality of life (QOL). The workers were recruited from a factory in south Taiwan. We assessed their psychological symptoms with a 5-item brief symptom rating scale (BSRS-5) and measured the QOL using the Taiwanese version of the World Health Organization Quality of Life (WHOQOL)-BREF. Multiple linear regression analysis was conducted to explore the association between the two tools after control of confounding by other predictors. A total of 1,080 workers , who attended a physical examination, completed questionnaires and informed consent forms. Scores on the BSRS-5 significantly predicted scores in each domain and items of the WHOQOL-BREF. The magnitude of psychological domain score seemed to be affected the most; every 1 point increase in BSRS-5 was associated with a 0.39 raw score (equivalent to 2. 44 percentile) decrease in QOL. The sleep facet of WHOQOL appeared to have the highest association, followed by items of negative feelings, energy, and concentration. The BSRS-5 score is predictive for scores of all four domains and 26 items of the Taiwanese version of the WHOQOL-BREF for regular factory workers

    HSMA_WOA: A hybrid novel Slime mould algorithm with whale optimization algorithm for tackling the image segmentation problem of chest X-ray images

    Get PDF
    Recently, a novel virus called COVID-19 has pervasive worldwide, starting from China and moving to all the world to eliminate a lot of persons. Many attempts have been experimented to identify the infection with COVID-19. The X-ray images were one of the attempts to detect the influence of COVID-19 on the infected persons from involving those experiments. According to the X-ray analysis, bilateral pulmonary parenchymal ground-glass and consolidative pulmonary opacities can be caused by COVID-19 — sometimes with a rounded morphology and a peripheral lung distribution. But unfortunately, the specification or if the person infected with COVID-19 or not is so hard under the X-ray images. X-ray images could be classified using the machine learning techniques to specify if the person infected severely, mild, or not infected. To improve the classification accuracy of the machine learning, the region of interest within the image that contains the features of COVID-19 must be extracted. This problem is called the image segmentation problem (ISP). Many techniques have been proposed to overcome ISP. The most commonly used technique due to its simplicity, speed, and accuracy are threshold-based segmentation. This paper proposes a new hybrid approach based on the thresholding technique to overcome ISP for COVID-19 chest X-ray images by integrating a novel meta-heuristic algorithm known as a slime mold algorithm (SMA) with the whale optimization algorithm to maximize the Kapur's entropy. The performance of integrated SMA has been evaluated on 12 chest X-ray images with threshold levels up to 30 and compared with five algorithms: Lshade algorithm, whale optimization algorithm (WOA), FireFly algorithm (FFA), Harris-hawks algorithm (HHA), salp swarm algorithms (SSA), and the standard SMA. The experimental results demonstrate that the proposed algorithm outperforms SMA under Kapur's entropy for all the metrics used and the standard SMA could perform better than the other algorithms in the comparison under all the metrics

    Tropical-cyclone-driven erosion of the terrestrial biosphere from mountains

    Get PDF
    The transfer of organic carbon from the terrestrial biosphere to the oceans via erosion and riverine transport constitutes an important component of the global carbon cycle. More than one third of this organic carbon flux comes from sediment-laden rivers that drain the mountains in the western Pacific region. This region is prone to tropical cyclones, but their role in sourcing and transferring vegetation and soil is not well constrained. Here we measure particulate organic carbon load and composition in the LiWu River, Taiwan, during cyclone-triggered floods. We correct for fossil particulate organic carbon using radiocarbon, and find that the concentration of particulate organic carbon from vegetation and soils is positively correlated with water discharge. Floods have been shown to carry large amounts of clastic sediment. Non-fossil particulate organic carbon transported at the same time may be buried offshore under high rates of sediment accumulation. We estimate that on decadal timescales, 77–92% of non-fossil particulate organic carbon eroded from the LiWu catchment is transported during large, cyclone-induced floods. We suggest that tropical cyclones, which affect many forested mountains within the Intertropical Convergence Zone, may provide optimum conditions for the delivery and burial of non-fossil particulate organic carbon in the ocean. This carbon transfer is moderated by the frequency, intensity and duration of tropical cyclones
    corecore