51 research outputs found

    Sisyphus cooling and amplification by a superconducting qubit

    Full text link
    Laser cooling of the atomic motion paved the way for remarkable achievements in the fields of quantum optics and atomic physics, including Bose-Einstein condensation and the trapping of atoms in optical lattices. More recently superconducting qubits were shown to act as artificial two-level atoms, displaying Rabi oscillations, Ramsey fringes, and further quantum effects. Coupling such qubits to resonators brought the superconducting circuits into the realm of quantum electrodynamics (circuit QED). It opened the perspective to use superconducting qubits as micro-coolers or to create a population inversion in the qubit to induce lasing behavior of the resonator. Furthering these analogies between quantum optical and superconducting systems we demonstrate here Sisyphus cooling of a low frequency LC oscillator coupled to a near-resonantly driven superconducting qubit. In the quantum optics setup the mechanical degrees of freedom of an atom are cooled by laser driving the atom's electronic degrees of freedom. Here the roles of the two degrees of freedom are played by the LC circuit and the qubit's levels, respectively. We also demonstrate the counterpart of the Sisyphus cooling, namely Sisyphus amplification. Parallel to the experimental demonstration we analyze the system theoretically and find quantitative agreement, which supports the interpretation and allows us to estimate system parameters.Comment: 7 pages, 4 figure

    Circuit Quantum Electrodynamics: Coherent Coupling of a Single Photon to a Cooper Pair Box

    Full text link
    Under appropriate conditions, superconducting electronic circuits behave quantum mechanically, with properties that can be designed and controlled at will. We have realized an experiment in which a superconducting two-level system, playing the role of an artificial atom, is strongly coupled to a single photon stored in an on-chip cavity. We show that the atom-photon coupling in this circuit can be made strong enough for coherent effects to dominate over dissipation, even in a solid state environment. This new regime of matter light interaction in a circuit can be exploited for quantum information processing and quantum communication. It may also lead to new approaches for single photon generation and detection.Comment: 8 pages, 4 figures, accepted for publication in Nature, embargo does apply, version with high resolution figures available at: http://www.eng.yale.edu/rslab/Andreas/content/science/PubsPapers.htm

    Cooling a nanomechanical resonator with quantum back-action

    Get PDF
    Quantum mechanics demands that the act of measurement must affect the measured object. When a linear amplifier is used to continuously monitor the position of an object, the Heisenberg uncertainty relationship requires that the object be driven by force impulses, called back-action. Here we measure the back-action of a superconducting single-electron transistor (SSET) on a radiofrequency nanomechanical resonator. The conductance of the SSET, which is capacitively coupled to the resonator, provides a sensitive probe of the latter's position;back-action effects manifest themselves as an effective thermal bath, the properties of which depend sensitively on SSET bias conditions. Surprisingly, when the SSET is biased near a transport resonance, we observe cooling of the nanomechanical mode from 550mK to 300mK-- an effect that is analogous to laser cooling in atomic physics. Our measurements have implications for nanomechanical readout of quantum information devices and the limits of ultrasensitive force microscopy (such as single-nuclear-spin magnetic resonance force microscopy). Furthermore, we anticipate the use of these backaction effects to prepare ultracold and quantum states of mechanical structures, which would not be accessible with existing technology.Comment: 28 pages, 7 figures; accepted for publication in Natur

    Resolving photon number states in a superconducting circuit

    Full text link
    Electromagnetic signals are always composed of photons, though in the circuit domain those signals are carried as voltages and currents on wires, and the discreteness of the photon's energy is usually not evident. However, by coupling a superconducting qubit to signals on a microwave transmission line, it is possible to construct an integrated circuit where the presence or absence of even a single photon can have a dramatic effect. This system is called circuit quantum electrodynamics (QED) because it is the circuit equivalent of the atom-photon interaction in cavity QED. Previously, circuit QED devices were shown to reach the resonant strong coupling regime, where a single qubit can absorb and re-emit a single photon many times. Here, we report a circuit QED experiment which achieves the strong dispersive limit, a new regime of cavity QED in which a single photon has a large effect on the qubit or atom without ever being absorbed. The hallmark of this strong dispersive regime is that the qubit transition can be resolved into a separate spectral line for each photon number state of the microwave field. The strength of each line is a measure of the probability to find the corresponding photon number in the cavity. This effect has been used to distinguish between coherent and thermal fields and could be used to create a photon statistics analyzer. Since no photons are absorbed by this process, one should be able to generate non-classical states of light by measurement and perform qubit-photon conditional logic, the basis of a logic bus for a quantum computer.Comment: 6 pages, 4 figures, hi-res version at http://www.eng.yale.edu/rslab/papers/numbersplitting_hires.pd

    Qubit-flip-induced cavity mode squeezing in the strong dispersive regime of the quantum Rabi model

    Get PDF
    Squeezed states of light are a set of nonclassical states in which the quantum fluctuations of one quadrature component are reduced below the standard quantum limit. With less noise than the best stabilised laser sources, squeezed light is a key resource in the field of quantum technologies and has already improved sensing capabilities in areas ranging from gravitational wave detection to biomedical applications. In this work we propose a novel technique for generating squeezed states of a confined light field strongly coupled to a two-level system, or qubit, in the dispersive regime. Utilising the dispersive energy shift caused by the interaction, control of the qubit state produces a time-dependent change in the frequency of the light field. An appropriately timed sequence of sudden frequency changes reduces the quantum noise fluctuations in one quadrature of the field well below the standard quantum limit. The degree of squeezing and the time of generation are directly controlled by the number of frequency shifts applied. Even in the presence of realistic noise and imperfections, our protocol promises to be capable of generating a useful degree of squeezing with present experimental capabilities

    Hybrid Mechanical Systems

    Full text link
    We discuss hybrid systems in which a mechanical oscillator is coupled to another (microscopic) quantum system, such as trapped atoms or ions, solid-state spin qubits, or superconducting devices. We summarize and compare different coupling schemes and describe first experimental implementations. Hybrid mechanical systems enable new approaches to quantum control of mechanical objects, precision sensing, and quantum information processing.Comment: To cite this review, please refer to the published book chapter (see Journal-ref and DOI). This v2 corresponds to the published versio

    Honey health benefits and uses in medicine

    Get PDF
    The generation of reactive oxygen species (ROS) and other free radicals during metabolism is an essential and normal process that ideally is compensated through the antioxidant system. However, due to many environmental, lifestyle, and pathological situations, free radicals and oxidants can be produced in excess, resulting in oxidative damage of biomolecules (e.g., lipids, proteins, and DNA). This plays a major role in the development of chronic and degenerative illness such as cancer, autoimmune disorders, aging, cataract, rheumatoid arthritis, cardiovascular, and neurodegenerative diseases (Pham-Huy et al. 2008; Willcox et al. 2004). The human body has several mechanisms to counteract oxidative stress by producing antioxidants, which are either naturally synthetized in situ, or externally supplied through foods, and/or supplements (Pham-Huy et al. 2008).info:eu-repo/semantics/publishedVersio

    The fitness for the Ageing Brain Study II (FABS II): protocol for a randomized controlled clinical trial evaluating the effect of physical activity on cognitive function in patients with Alzheimer's disease

    Get PDF
    Background: Observational studies have documented a potential protective effect of physical exercise in older adults who are at risk for developing Alzheimer's disease. The Fitness for the Ageing Brain II (FABS II) study is a multicentre randomized controlled clinical trial (RCT) aiming to determine whether physical activity reduces the rate of cognitive decline among individuals with Alzheimer's disease. This paper describes the background, objectives of the study, and an overview of the protocol including design, organization and data collection methods

    Primary progressive aphasia: a clinical approach

    Get PDF
    This work was supported by the Alzheimer’s Society (AS-PG-16-007), the National Institute for Health Research University College London Hospitals Biomedical Research Centre and the UCL Leonard Wolfson Experimental Neurology Centre (PR/ylr/18575). Individual authors were supported by the Leonard Wolfson Foundation (Clinical Research Fellowship to CRM), the National Institute for Health Research (NIHR Doctoral Training Fellowship to AV), the National Brain Appeal–Frontotemporal Dementia Research Fund (CNC) and the Medical Research Council (PhD Studentships to CJDH and RLB, MRC Research Training Fellowship to PDF, MRC Clinician Scientist to JDR). MNR and NCF are NIHR Senior Investigators. SJC is supported by Grants from ESRC-NIHR (ES/L001810/1), EPSRC (EP/M006093/1) and Wellcome Trust (200783). JDW was supported by a Wellcome Trust Senior Research Fellowship in Clinical Science (091673/Z/10/Z)
    • …
    corecore