Quantum mechanics demands that the act of measurement must affect the
measured object. When a linear amplifier is used to continuously monitor the
position of an object, the Heisenberg uncertainty relationship requires that
the object be driven by force impulses, called back-action. Here we measure the
back-action of a superconducting single-electron transistor (SSET) on a
radiofrequency nanomechanical resonator. The conductance of the SSET, which is
capacitively coupled to the resonator, provides a sensitive probe of the
latter's position;back-action effects manifest themselves as an effective
thermal bath, the properties of which depend sensitively on SSET bias
conditions. Surprisingly, when the SSET is biased near a transport resonance,
we observe cooling of the nanomechanical mode from 550mK to 300mK-- an effect
that is analogous to laser cooling in atomic physics. Our measurements have
implications for nanomechanical readout of quantum information devices and the
limits of ultrasensitive force microscopy (such as single-nuclear-spin magnetic
resonance force microscopy). Furthermore, we anticipate the use of these
backaction effects to prepare ultracold and quantum states of mechanical
structures, which would not be accessible with existing technology.Comment: 28 pages, 7 figures; accepted for publication in Natur