18 research outputs found

    Land use and sexual harassment: A geospatial analysis based on the volunteer HarassMap-Egypt

    Get PDF
    Sexual harassment and gang rape in Egypt have garnered attention from both traditional and digital media. This study employed a volunteer HarassMap to analyse sexual harassment crimes (SHCs) across Egypt from a spatial perspective. The specific aims were to apply the Hierarchical Density-Based Spatial Clustering of Applications with Noise (HDBSCAN) algorithm to locate clusters of reported SHCs, and to assess their spatial dependence on land use types. To accomplish this task, ring buffers of 100, 200, 300, 400, and 500 metres were established around each crime scene to determine which land use was mostly associated with the incidence of these SHCs. Local bivariate relationships were used to explore the associations between SHC and each land-use category. Results from the HDBSCAN algorithm revealed four crime clusters within the study domain, mainly located in Greater Cairo, Alexandria, and Behaira. Notably, commercial establishments and transit stations showed a significantly positive correlation with SHC. The study shows how land uses shape SHC and showed that it is possible to identify environmental risk factors for harassment. These risk factors can help policymakers, urban planners, and community stakeholders prevent and reduce sexual harassment and gender inequality, and promote just and inclusive societies.Peer reviewe

    Use of wet-laid techniques to form flax-polypropylene nonwovens as base substrates for eco-friendly composites by using hot-press molding

    Full text link
    The wet-laid process with flax (base) and polypropylene (binder) fibers has been used to obtain nonwovens for further processing by hot-press molding. Mechanical characterization of nonwovens has revealed that slight anisotropy is obtained with the wet-laid process as better tensile strength is obtained in the preferential deposition direction. The thermo-bonding process provides good cohesion to nonwovens, which is critical for further handling/shaping by hot-press molding. Flax:PP composites have been processed by stacking eight individual flax:PP nonwoven sheets and applying moderate temperature and pressure. As the amount of binder fiber is relatively low (< 30 wt%) if compared with similar systems processed by extrusion and injection molding, it is possible to obtain eco-friendly composites as the total content on natural fiber (flax) is higher than 70 wt%. Mechanical characterization of hot-pressed flax:PP composites has revealed high dependency of tensile and flexural strength on the total amount of binder fiber as this component is responsible for flax fiber embedment which is a critical parameter to ensure good fibermatrix interaction. Combination of wet-laid techniques with hot-press molding processes is interesting from both technical and environmental points of view as high natural fiber content composites with balanced properties can be obtained. POLYM. COMPOS., 2012. (c) 2011 Society of Plastics EngineersThis work is part of the project IPT-310000-2010-037, "ECOTEXCOMP: Research and development of textile structures useful as reinforcement of composite materials with marked ecological character" funded by the "Ministerio de Ciencia e Innovacion," with an aid of 189540.20 euros, within the "Plan Nacional de InvestigacionCientifica, Desarrollo e InnovacionTecnologica 2008-2011" and funded by the European Union through FEDER funds, Technology Fund 2007-2013, Operational Programme on R+D+i for and on behalf of the companies." It is also acknowledged the project "WET-TEX: Implementacion de la tecnologia wet-laid en el desarrollo de nuevos textiles medico-sanitario" with expedient number IMIDIC/2010/137 (total aid of 284400 euro), and the project "WET-TEX II: Implementacion de la tecnologia wet-laid en la investigacion y desarrollo de paneles para aplicaciones tecnicas a partir de residuos procedentes de la industria textil." with expedient number IMDEEA/2011/167 (total aid of 255000 euro) funded by IMPIVA and cofunded (80%) by the European Union through FEDER funds, Valencian Community Operational 2007-2012.Fages, E.; Gironés Bernabé, S.; Sánchez Nacher, L.; García Sanoguera, D.; Balart Gimeno, RA. (2012). Use of wet-laid techniques to form flax-polypropylene nonwovens as base substrates for eco-friendly composites by using hot-press molding. Polymer Composites. 33(2):253-261. doi:10.1002/pc.22147S253261332Hargitai, H., Rácz, I., & Anandjiwala, R. D. (2008). Development of HEMP Fiber Reinforced Polypropylene Composites. Journal of Thermoplastic Composite Materials, 21(2), 165-174. doi:10.1177/0892705707083949P.A., S., Joseph, K., G., U., & Thomas, S. (2010). Surface-modified sisal fiber-reinforced eco-friendly composites: Mechanical, thermal, and diffusion studies. Polymer Composites, 32(1), 131-138. doi:10.1002/pc.21028Pan, P., Zhu, B., Dong, T., Serizawa, S., Iji, M., & Inoue, Y. (2007). Kenaf fiber/poly(ɛ-caprolactone) biocomposite with enhanced crystallization rate and mechanical properties. Journal of Applied Polymer Science, 107(6), 3512-3519. doi:10.1002/app.27470Khan, M. A., & Hassan, M. M. (2006). Effect of γ-aminopropyl trimethoxy silane on the performance of jute–polycarbonate composites. Journal of Applied Polymer Science, 100(5), 4142-4154. doi:10.1002/app.23441De Arcaya, P. A., Retegi, A., Arbelaiz, A., Kenny, J. M., & Mondragon, I. (2009). Mechanical properties of natural fibers/polyamides composites. Polymer Composites, 30(3), 257-264. doi:10.1002/pc.20558X. Li, S. Panigrahi, & L. G. Tabil. (2009). A Study on Flax Fiber-Reinforced Polyethylene Biocomposites. Applied Engineering in Agriculture, 25(4), 525-531. doi:10.13031/2013.27454John, M. J., & Anandjiwala, R. D. (2009). Chemical modification of flax reinforced polypropylene composites. Composites Part A: Applied Science and Manufacturing, 40(4), 442-448. doi:10.1016/j.compositesa.2009.01.007Leite, M. C. A. M., Furtado, C. R. G., Couto, L. O., Oliveira, F. L. B. O., & Correia, T. R. (2010). Avaliação da biodegradação de compósitos de poli(ε-caprolactona)/fibra de coco verde. Polímeros, 20(5), 339-344. doi:10.1590/s0104-14282010005000063Christian, S. J., & Billington, S. L. (2011). Mechanical response of PHB- and cellulose acetate natural fiber-reinforced composites for construction applications. Composites Part B: Engineering, 42(7), 1920-1928. doi:10.1016/j.compositesb.2011.05.039Hodzic, A., Coakley, R., Curro, R., Berndt, C. C., & Shanks, R. A. (2007). Design and Optimization of Biopolyester Bagasse Fiber Composites. Journal of Biobased Materials and Bioenergy, 1(1), 46-55. doi:10.1166/jbmb.2007.005Bax, B., & Müssig, J. (2008). Impact and tensile properties of PLA/Cordenka and PLA/flax composites. Composites Science and Technology, 68(7-8), 1601-1607. doi:10.1016/j.compscitech.2008.01.004Bogoeva-Gaceva, G., Avella, M., Malinconico, M., Buzarovska, A., Grozdanov, A., Gentile, G., & Errico, M. E. (2007). Natural fiber eco-composites. Polymer Composites, 28(1), 98-107. doi:10.1002/pc.20270Ashori, A. (2008). Wood–plastic composites as promising green-composites for automotive industries! Bioresource Technology, 99(11), 4661-4667. doi:10.1016/j.biortech.2007.09.043Alves, C., Ferrão, P. M. C., Silva, A. J., Reis, L. G., Freitas, M., Rodrigues, L. B., & Alves, D. E. (2010). Ecodesign of automotive components making use of natural jute fiber composites. Journal of Cleaner Production, 18(4), 313-327. doi:10.1016/j.jclepro.2009.10.022Mohanty, A. K., Misra, M., & Drzal, L. T. (2002). Journal of Polymers and the Environment, 10(1/2), 19-26. doi:10.1023/a:1021013921916Larsson-Brelid, P., Wålinder, M. E. P., Westin, M., & Rowell, R. (2008). Ecobuild a Center for Development of Fully Biobased Material Systems and Furniture Applications. Molecular Crystals and Liquid Crystals, 484(1), 257/[623]-264/[630]. doi:10.1080/15421400801904666MacDougall, C. (2008). Natural Building Materials in Mainstream Construction: Lessons from the U. K. Journal of Green Building, 3(3), 1-14. doi:10.3992/jgb.3.3.1El-Sabbagh, A., Steuernagel, L., & Ziegmann, G. (2009). Processing and modeling of the mechanical behavior of natural fiber thermoplastic composite: Flax/polypropylene. Polymer Composites, 30(4), 510-519. doi:10.1002/pc.20675Aurich, T., & Mennig, G. (2001). Flow-induced fiber orientation in injection molded fit fiber reinforced polypropylene. Polymer Composites, 22(5), 680-689. doi:10.1002/pc.10570Andersons, J., Spārniņš, E., & Joffe, R. (2006). Stiffness and strength of flax fiber/polymer matrix composites. Polymer Composites, 27(2), 221-229. doi:10.1002/pc.20184Saiah, R., Sreekumar, P. A., Gopalakrishnan, P., Leblanc, N., Gattin, R., & Saiter, J. M. (2009). Fabrication and characterization of 100% green composite: Thermoplastic based on wheat flour reinforced by flax fibers. Polymer Composites, 30(11), 1595-1600. doi:10.1002/pc.20732Siaotong, B. A. C., Tabil, L. G., Panigrahi, S. A., & Crerar, W. J. (2010). Extrusion Compounding of Flax-Fiber-Reinforced Polyethylene Composites: Effects of Fiber Content and Extrusion Parameters. Journal of Natural Fibers, 7(4), 289-306. doi:10.1080/15440478.2010.527680Twite-Kabamba, E., Mechraoui, A., & Rodrigue, D. (2009). Rheological properties of polypropylene/hemp fiber composites. Polymer Composites, 30(10), 1401-1407. doi:10.1002/pc.20704S.R. Wang T.H. Yan J.H. Jiang N.L. Chen Proceedings of the 2009 International Textile Science and Technology Forum 2010H. Hargitai I. Racz R. Anandjiwala Development of HEMP Fiber Reinforced Polypropylene Composites 2007Chen, J. Y., Müller, D. H., König, C., Nießen, K., & Müssig, J. (2010). Spunlaced Flax/Polypropylene Nonwoven as Auto Interior Material: Acoustical and Fogging Performance. Journal of Biobased Materials and Bioenergy, 4(4), 330-337. doi:10.1166/jbmb.2010.1097Yan Chen, Müller, D. H., Nießen, K., & Müssig, J. (2008). Spunlaced Flax/Polypropylene Nonwoven as Auto Interior Material: Mechanical Performance. Journal of Industrial Textiles, 38(1), 69-86. doi:10.1177/1528083707087832JOLLY, M., & JAYARAMAN, K. (2006). MANUFACTURING FLAX FIBRE-REINFORCED POLYPROPYLENE COMPOSITES BY HOT-PRESSING. International Journal of Modern Physics B, 20(25n27), 4601-4606. doi:10.1142/s0217979206041756Niu, H., Jiao, X., Wang, R., & Zhou, H. (2010). Direct manufacturing of flax fibers reinforced low melting point PET composites from nonwoven mats. Fibers and Polymers, 11(2), 218-222. doi:10.1007/s12221-010-0218-2Mieck, K.-P., Lützkendorf, R., & Reussmann, T. (1996). Needle-Punched hybrid nonwovens of flax and ppfibers-textile semiproducts for manufacturing of fiber composites. Polymer Composites, 17(6), 873-878. doi:10.1002/pc.1068
    corecore