810 research outputs found

    Solutions of fractional gas dynamics equation by a new technique

    Full text link
    [EN] In this paper, a novel technique is formed to obtain the solution of a fractional gas dynamics equation. Some reproducing kernel Hilbert spaces are defined. Reproducing kernel functions of these spaces have been found. Some numerical examples are shown to confirm the efficiency of the reproducing kernel Hilbert space method. The accurate pulchritude of the paper is arisen in its strong implementation of Caputo fractional order time derivative on the classical equations with the success of the highly accurate solutions by the series solutions. Reproducing kernel Hilbert space method is actually capable of reducing the size of the numerical work. Numerical results for different particular cases of the equations are given in the numerical section.This research was partially supported by Spanish Ministerio de Ciencia, Innovacion y Universidades PGC2018-095896-B-C22 and Generalitat Valenciana PROMETEO/2016/089.Akgül, A.; Cordero Barbero, A.; Torregrosa Sánchez, JR. (2020). Solutions of fractional gas dynamics equation by a new technique. Mathematical Methods in the Applied Sciences. 43(3):1349-1358. https://doi.org/10.1002/mma.5950S13491358433Singh, J., Kumar, D., & Kılıçman, A. (2013). Homotopy Perturbation Method for Fractional Gas Dynamics Equation Using Sumudu Transform. Abstract and Applied Analysis, 2013, 1-8. doi:10.1155/2013/934060Momani, S. (2005). Analytic and approximate solutions of the space- and time-fractional telegraph equations. Applied Mathematics and Computation, 170(2), 1126-1134. doi:10.1016/j.amc.2005.01.009Hajipour, M., Jajarmi, A., Baleanu, D., & Sun, H. (2019). On an accurate discretization of a variable-order fractional reaction-diffusion equation. Communications in Nonlinear Science and Numerical Simulation, 69, 119-133. doi:10.1016/j.cnsns.2018.09.004Meng, R., Yin, D., & Drapaca, C. S. (2019). Variable-order fractional description of compression deformation of amorphous glassy polymers. Computational Mechanics, 64(1), 163-171. doi:10.1007/s00466-018-1663-9Baleanu, D., Jajarmi, A., & Hajipour, M. (2018). On the nonlinear dynamical systems within the generalized fractional derivatives with Mittag–Leffler kernel. Nonlinear Dynamics, 94(1), 397-414. doi:10.1007/s11071-018-4367-yJajarmi, A., & Baleanu, D. (2018). A new fractional analysis on the interaction of HIV withCD4+T-cells. Chaos, Solitons & Fractals, 113, 221-229. doi:10.1016/j.chaos.2018.06.009Baleanu, D., Jajarmi, A., Bonyah, E., & Hajipour, M. (2018). New aspects of poor nutrition in the life cycle within the fractional calculus. Advances in Difference Equations, 2018(1). doi:10.1186/s13662-018-1684-xJajarmi, A., & Baleanu, D. (2017). Suboptimal control of fractional-order dynamic systems with delay argument. Journal of Vibration and Control, 24(12), 2430-2446. doi:10.1177/1077546316687936Singh, J., Kumar, D., & Baleanu, D. (2018). On the analysis of fractional diabetes model with exponential law. Advances in Difference Equations, 2018(1). doi:10.1186/s13662-018-1680-1Kumar, D., Singh, J., Tanwar, K., & Baleanu, D. (2019). A new fractional exothermic reactions model having constant heat source in porous media with power, exponential and Mittag-Leffler laws. International Journal of Heat and Mass Transfer, 138, 1222-1227. doi:10.1016/j.ijheatmasstransfer.2019.04.094Kumar, D., Singh, J., Al Qurashi, M., & Baleanu, D. (2019). A new fractional SIRS-SI malaria disease model with application of vaccines, antimalarial drugs, and spraying. Advances in Difference Equations, 2019(1). doi:10.1186/s13662-019-2199-9Kumar, D., Singh, J., Purohit, S. D., & Swroop, R. (2019). A hybrid analytical algorithm for nonlinear fractional wave-like equations. Mathematical Modelling of Natural Phenomena, 14(3), 304. doi:10.1051/mmnp/2018063Kumar, D., Tchier, F., Singh, J., & Baleanu, D. (2018). An Efficient Computational Technique for Fractal Vehicular Traffic Flow. Entropy, 20(4), 259. doi:10.3390/e20040259Goswami, A., Singh, J., Kumar, D., & Sushila. (2019). An efficient analytical approach for fractional equal width equations describing hydro-magnetic waves in cold plasma. Physica A: Statistical Mechanics and its Applications, 524, 563-575. doi:10.1016/j.physa.2019.04.058Mohyud-Din, S. T., Bibi, S., Ahmed, N., & Khan, U. (2018). Some exact solutions of the nonlinear space–time fractional differential equations. Waves in Random and Complex Media, 29(4), 645-664. doi:10.1080/17455030.2018.1462541Momani, S., & Shawagfeh, N. (2006). Decomposition method for solving fractional Riccati differential equations. Applied Mathematics and Computation, 182(2), 1083-1092. doi:10.1016/j.amc.2006.05.008Hashim, I., Abdulaziz, O., & Momani, S. (2009). Homotopy analysis method for fractional IVPs. Communications in Nonlinear Science and Numerical Simulation, 14(3), 674-684. doi:10.1016/j.cnsns.2007.09.014Yıldırım, A. (2010). He’s homotopy perturbation method for solving the space- and time-fractional telegraph equations. International Journal of Computer Mathematics, 87(13), 2998-3006. doi:10.1080/00207160902874653Momani, S., & Odibat, Z. (2007). Numerical comparison of methods for solving linear differential equations of fractional order. Chaos, Solitons & Fractals, 31(5), 1248-1255. doi:10.1016/j.chaos.2005.10.068Rida, S. Z., El-Sayed, A. M. A., & Arafa, A. A. M. (2010). On the solutions of time-fractional reaction–diffusion equations. Communications in Nonlinear Science and Numerical Simulation, 15(12), 3847-3854. doi:10.1016/j.cnsns.2010.02.007Machado, J. A. T., & Mata, M. E. (2014). A fractional perspective to the bond graph modelling of world economies. Nonlinear Dynamics, 80(4), 1839-1852. doi:10.1007/s11071-014-1334-0Raja Balachandar, S., Krishnaveni, K., Kannan, K., & Venkatesh, S. G. (2018). Analytical Solution for Fractional Gas Dynamics Equation. National Academy Science Letters, 42(1), 51-57. doi:10.1007/s40009-018-0662-xWang, Y.-L., Liu, Y., Li, Z., & zhang, H. (2018). Numerical solution of integro-differential equations of high-order Fredholm by the simplified reproducing kernel method. International Journal of Computer Mathematics, 96(3), 585-593. doi:10.1080/00207160.2018.1455091Gumah, G. N., Naser, M. F. M., Al-Smadi, M., & Al-Omari, S. K. (2018). Application of reproducing kernel Hilbert space method for solving second-order fuzzy Volterra integro-differential equations. Advances in Difference Equations, 2018(1). doi:10.1186/s13662-018-1937-8Al-Smadi, M. (2018). Simplified iterative reproducing kernel method for handling time-fractional BVPs with error estimation. Ain Shams Engineering Journal, 9(4), 2517-2525. doi:10.1016/j.asej.2017.04.006Kashkari, B. S. H., & Syam, M. I. (2018). Reproducing Kernel Method for Solving Nonlinear Fractional Fredholm Integrodifferential Equation. Complexity, 2018, 1-7. doi:10.1155/2018/2304858Akgül, A., & Grow, D. (2019). Existence of Unique Solutions to the Telegraph Equation in Binary Reproducing Kernel Hilbert Spaces. Differential Equations and Dynamical Systems, 28(3), 715-744. doi:10.1007/s12591-019-00453-3Akgül, A., Khan, Y., Akgül, E. K., Baleanu, D., & Al Qurashi, M. M. (2017). Solutions of nonlinear systems by reproducing kernel method. The Journal of Nonlinear Sciences and Applications, 10(08), 4408-4417. doi:10.22436/jnsa.010.08.33Karatas Akgül, E. (2018). Reproducing kernel Hilbert space method for solutions of a coefficient inverse problem for the kinetic equation. An International Journal of Optimization and Control: Theories & Applications (IJOCTA), 8(2), 145-151. doi:10.11121/ijocta.01.2018.00568Akgül, A., Inc, M., & Karatas, E. (2015). Reproducing kernel functions for difference equations. Discrete & Continuous Dynamical Systems - S, 8(6), 1055-1064. doi:10.3934/dcdss.2015.8.1055Akgül, A., Inc, M., Karatas, E., & Baleanu, D. (2015). Numerical solutions of fractional differential equations of Lane-Emden type by an accurate technique. Advances in Difference Equations, 2015(1). doi:10.1186/s13662-015-0558-8Aronszajn, N. (1950). Theory of reproducing kernels. Transactions of the American Mathematical Society, 68(3), 337-337. doi:10.1090/s0002-9947-1950-0051437-7Bergman, S. (1950). The Kernel Function and Conformal Mapping. Mathematical Surveys and Monographs. doi:10.1090/surv/005Inc, M., & Akgül, A. (2014). Approximate solutions for MHD squeezing fluid flow by a novel method. Boundary Value Problems, 2014(1). doi:10.1186/1687-2770-2014-18Inc, M., Akgül, A., & Geng, F. (2014). Reproducing Kernel Hilbert Space Method for Solving Bratu’s Problem. Bulletin of the Malaysian Mathematical Sciences Society, 38(1), 271-287. doi:10.1007/s40840-014-0018-8Wang, Y., & Chao, L. (2008). Using reproducing kernel for solving a class of partial differential equation with variable-coefficients. Applied Mathematics and Mechanics, 29(1), 129-137. doi:10.1007/s10483-008-0115-yWu, B. Y., & Li, X. Y. (2011). A new algorithm for a class of linear nonlocal boundary value problems based on the reproducing kernel method. Applied Mathematics Letters, 24(2), 156-159. doi:10.1016/j.aml.2010.08.036Yao, H., & Lin, Y. (2009). Solving singular boundary-value problems of higher even-order. Journal of Computational and Applied Mathematics, 223(2), 703-713. doi:10.1016/j.cam.2008.02.01

    Fine sediment reduces vertical migrations of Gammarus pulex (Crustacea: Amphipoda) in response to surface water loss

    Get PDF
    Surface and subsurface sediments in river ecosystems are recognized as refuges that may promote invertebrate survival during disturbances such as floods and streambed drying. Refuge use is spatiotemporally variable, with environmental factors including substrate composition, in particular the proportion of fine sediment (FS), affecting the ability of organisms to move through interstitial spaces. We conducted a laboratory experiment to examine the effects of FS on the movement of Gammarus pulex Linnaeus (Crustacea: Amphipoda) into subsurface sediments in response to surface water loss. We hypothesized that increasing volumes of FS would impede and ultimately prevent individuals from migrating into the sediments. To test this hypothesis, the proportion of FS (1–2 mm diameter) present within an open gravel matrix (4–16 mm diameter) was varied from 10 to 20% by volume in 2.5% increments. Under control conditions (0% FS), 93% of individuals moved into subsurface sediments as the water level was reduced. The proportion of individuals moving into the subsurface decreased to 74% at 10% FS, and at 20% FS no individuals entered the sediments, supporting our hypothesis. These results demonstrate the importance of reducing FS inputs into river ecosystems and restoring FS-clogged riverbeds, to promote refuge use during increasingly common instream disturbances

    Common variants of the beta and gamma subunits of the epithelial sodium channel and their relation to plasma renin and aldosterone levels in essential hypertension

    Get PDF
    BACKGROUND: Rare mutations of the epithelial sodium channel (ENaC) result in the monogenic hypertension form of Liddle's syndrome. We decided to screen for common variants in the ENaC βand γ subunits in patients with essential hypertension and to relate their occurrence to the activity of circulating renin-angiotensin-aldosterone system. METHODS: Initially, DNA samples from 27 patients with low renin/low aldosterone hypertension were examined. The DNA variants were subsequently screened for in 347 patients with treatment-resistant hypertension, 175 male subjects with documented long-lasting normotension and 301 healthy Plasma renin and aldosterone levels were measured under baseline conditions and during postural and captopril challenge tests. RESULTS: Two commonly occurring βENaC variants (G589S and a novel intronic i12-17CT substitution) and one novel γENaC variant (V546I) were detected. One of these variants occurred in a heterozygous form in 32 patients, a prevalence (9.2%) significantly higher than that in normotensive males (2.9%, p = 0.007) and blood donors (3.0%, p = 0.001). βENaC i12-17CT was significantly more prevalent in the hypertension group than in the two control groups combined (4.6% vs. 1.1%, p = 0.001). When expressed in Xenopus oocytes, neither of the two ENaC amino acid-changing variants showed a significant difference in activity compared with ENaC wild-type. No direct evidence for a mRNA splicing defect could be obtained for the βENaC intronic variant. The ratio of daily urinary potassium excretion to upright and mean (of supine and upright values) plasma renin activity was higher in variant allele carriers than in non-carriers (p = 0.034 and p = 0.048). CONCLUSIONS: At least 9% of Finnish patients with hypertension admitted to a specialized center carry genetic variants of β and γENaC, a three times higher prevalence than in the normotensive individuals or in random healthy controls. Patients with the variant alleles showed an increased urinary potassium excretion rate in relation to their renin levels

    Millisecond Oscillations in X-Ray Binaries

    Get PDF
    The first millisecond X-ray variability phenomena from accreting compact objects have recently been discovered with the Rossi X-ray Timing Explorer. Three new phenomena are observed from low-mass X-ray binaries containing low-magnetic-field neutron stars: millisecond pulsations, burst oscillations and kiloHertz quasi-periodic oscillations. Models for these new phenomena involve the neutron star spin, and orbital motion closely around the neutron star and rely explicitly on our understanding of strong gravity and dense matter. I review the observations of these new neutron-star phenomena and possibly related ones in black-hole candidates, and describe the attempts to use them to perform measurements of fundamental physical interest in these systems.Comment: 40 pages, 17 figures, 4 tables - submitted to the Annual Review of Astronomy and Astrophysics; to appear September 200

    The extraordinary evolutionary history of the reticuloendotheliosis viruses

    Get PDF
    The reticuloendotheliosis viruses (REVs) comprise several closely related amphotropic retroviruses isolated from birds. These viruses exhibit several highly unusual characteristics that have not so far been adequately explained, including their extremely close relationship to mammalian retroviruses, and their presence as endogenous sequences within the genomes of certain large DNA viruses. We present evidence for an iatrogenic origin of REVs that accounts for these phenomena. Firstly, we identify endogenous retroviral fossils in mammalian genomes that share a unique recombinant structure with REVs—unequivocally demonstrating that REVs derive directly from mammalian retroviruses. Secondly, through sequencing of archived REV isolates, we confirm that contaminated Plasmodium lophurae stocks have been the source of multiple REV outbreaks in experimentally infected birds. Finally, we show that both phylogenetic and historical evidence support a scenario wherein REVs originated as mammalian retroviruses that were accidentally introduced into avian hosts in the late 1930s, during experimental studies of P. lophurae, and subsequently integrated into the fowlpox virus (FWPV) and gallid herpesvirus type 2 (GHV-2) genomes, generating recombinant DNA viruses that now circulate in wild birds and poultry. Our findings provide a novel perspective on the origin and evolution of REV, and indicate that horizontal gene transfer between virus families can expand the impact of iatrogenic transmission events

    Effect of Covid-19 lockdown on mobility and traffic accidents in Malaysia

    Get PDF
    With the rapid spread of the coronavirus (COVID-19), the Malaysian government implemented a series of lockdown measures to break the chain of COVID-19 within the community. The lockdown measures were separated into three phases, namely movement control order (MCO), conditional movement control order (CMCO), and recovery movement control order (RMCO). Due to limited research conducted, this paper aims to investigate the effect of COVID-19 lockdown on mobility and traffic accidents in Malaysia. Quantitative data were collected from the internet and the government agency. They were analysed through descriptive and inferential statistics. Descriptive statistics were used to analyse the changes in mobility and the number of traffic accidents in different aspects. Meanwhile, inferential statistics such as simple regression analysis were applied to validate the relationship between mobility and the number of accidents. The results were presented using graphical and tabular methods. The findings show that the mobility dropped by 64% on average during MCO compared to a baseline value computed during the pre-lockdown period. The reduction in mobility during CMCO and RMCO was 40% and 15%, respectively. Next, the regression analysis reveals a strong positive relationship between mobility and the number of traffic accidents. Hence, the reduction in traffic accidents can be concluded as an impact of COVID-19 lockdown. The reduction in the number of accidents during the three lockdown periods was: MCO (73%), CMCO (46%), and RMCO (19%), compared to the average of 2015-2019. Besides, it was found that the reduction in the number of traffic accidents was greater than the reduction in mobility during the lockdown periods. This suggests that traffic reduction has a multiplicative effect on road safety. Moreover, the findings reveal that the reduction in severe and fatal accidents was greater than the reduction in mobility. This suggests a positive effect of COVID-19 lockdown on the severity of traffic accidents. This study provides an insight into the effect of COVID-19 lockdown on traffic patterns in Malaysia. It also provides important implications for traffic management

    Generalized linear model for interval mapping of quantitative trait loci

    Get PDF
    We developed a generalized linear model of QTL mapping for discrete traits in line crossing experiments. Parameter estimation was achieved using two different algorithms, a mixture model-based EM (expectation–maximization) algorithm and a GEE (generalized estimating equation) algorithm under a heterogeneous residual variance model. The methods were developed using ordinal data, binary data, binomial data and Poisson data as examples. Applications of the methods to simulated as well as real data are presented. The two different algorithms were compared in the data analyses. In most situations, the two algorithms were indistinguishable, but when large QTL are located in large marker intervals, the mixture model-based EM algorithm can fail to converge to the correct solutions. Both algorithms were coded in C++ and interfaced with SAS as a user-defined SAS procedure called PROC QTL

    Direct Decarboxylative Allylation and Arylation of Aliphatic Carboxylic Acids Using Flavin‐Mediated Photoredox Catalysis

    Get PDF
    We describe herein a direct decarboxylative allylation of aliphatic carboxylic acids with allylsulfones using visible light and riboflavin tetraacetate (RFTA) as photocatalyst. The reaction proceeds at room temperature tolerating a wide range of functionalities, avoiding the use of external bases or additives. Mechanistic studies support that alkyl radicals are involved in the reaction and that a true photocatalytic cycle is operating. It is proposed that the carboxylic acid is deprotonated by [RFTA]·–, and the corresponding carboxylate acts as a reductive quencher of RFTA*, which after decarboxylation produces the alkyl radical. The methodology was adapted to prepare benzothiazoles substituted at C2, by reacting some carboxylic acids with 2‐(phenylsulfonyl)benzothiazole. The number of carboxylic acids suitable for this arylation was lower than for the allylation and this different reactivity was briefly commented.This work was generously supported by the Spanish Ministerio de Economía y Competitividad (CTQ2017–88171-P) and the Generalitat Valenciana (AICO/2017/007). N. P. R. thanks to Instituto de Síntesis Orgánica for financial support
    corecore