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Direct decarboxylative allylation and arylation of aliphatic 

carboxylic acids using flavin mediated photoredox catalysis 

Nieves P. Ramirez,[a] Teresa Lana-Villarreal,[b] and Jose C. Gonzalez-Gomez*[a] 

Abstract: We describe herein a direct decarboxylative allylation of aliphatic carboxylic acids with allylsulfones using visible light and riboflavin 

tetraacetate (RFTA) as photocatalyst. The reaction proceeds at room temperature tolerating a wide range of functionalities, avoiding the use of 

external bases or additives. Mechanistic studies support that alkyl radicals are involved in the reaction, and that a true photocatalytic cycle is 

operating. It is proposed that the carboxylic acid is deprotonated by [RFTA]• ̶ , and the corresponding carboxylate acts as reductive quencher of 

RFTA*, which after decarboxylation produces the alkyl radical. The methodology was adapted to prepare benzothiazoles substituted at C2, by 

reacting some carboxylic acids with 2-(phenylsulfonyl)benzothiazole. The number of carboxylic acids suitable for this arylation was lower than 

for the allylation and this different reactivity was briefly commented. 

Introduction 

In recent years, photoredox catalysis has made important 

progresses on the use of visible light energy to activate organic 

molecules and promote their reactivity under very mild and 

sustainable conditions.[1] In this context, the photocatalytic 

oxidation of aliphatic carboxylic acids is a very convenient 

approach to generate free radicals, after fast decarboxylation of 

the corresponding acyloxy radicals (k ~ 109 s-1 at 25 ºC).[2]  

Although other radical precursors have also been successfully 

exploited (e.g. alkyltrifluoroborates,[3] silicates,[4] 

dihydropyridines,[5] and Katritzky pyridinium salts[6]), carboxylic 

acids are ideal starting materials because they are abundant, 

inexpensive, stable and some of them are derived from 

biomass.[7] The vast majority of photocatalytic decarboxylative 

functionalizations of carboxylic acids use bases in stoichiometric 

amounts to facilitate the oxidation of the corresponding 

carboxylate. This is not surprising if we consider that the oxidation 

potential of the carboxylic acid (e.g. for phenylacetic acid 

E1/2(RCO2H•+/RCO2H) = +2.51 V vs SCE) is much higher than the 

one corresponding to the carboxylate (for tetrabutylammonium 

phenylacetate: E1/2(RCO2
•/RCO2

−) = +1.27 V vs. SCE).[8] Actually, 

functionalized carboxylic acids have been used in a variety of 

photocatalytic oxidative transformations of other functional groups, 

relying on the fact that the carboxyl group is not oxidizable itself.[9] 

In practice, the photocatalytic oxidation of carboxylic acids to 

acyloxy radicals usually involves a deprotonation by an external 

base, followed by a photoinduced electron transfer (PET) to 

strongly oxidizing photocatalysts (Scheme 1a). Although some 

iridium photocatalysts have very favorable redox potentials (e.g. 

for [Ir(dF(CF3)ppy)2(bpy)]PF6: E1/2(*IrIII/IrII) = + 1.32 V vs. SCE)[10] 

for this transformation and convenient long excited state lifetimes, 

they are very rare and expensive, being organic dyes inexpensive 

and environmentally friendly alternatives.  
 

 

Scheme 1. (a) Photocatalytic oxidation of carboxylic acids with IrIII-derived 

photocatalyst. (b) RFTA acting as base and photocatalyst in the photooxidation 

of carboxylic acids. (c) Radical addition to allylsulfones or to 2-

(phenylsulfonyl)benzothiazole, followed by elimination of phenyl sulfonyl radical. 

Among different oxidizing organic photocatalysts, we were 

particularly attracted by riboflavin (RF),[11] a natural compound 

also known as vitamin B2, which is very abundant and responsible 

for the redox activity of several flavo-enzymes.[12] Upon visible 

light irradiation (λmax ~ 450 nm), RF is excited to its short-lived 

singlet state (*S1,  = 6.8 ns) and undergoes an efficient 

intersystem crossing (ϕISC = 0.38) to obtain a long-lived triplet 

state (*T1,  = 15 s), which is oxidant enough (E1/2 (3RF*/RF•-) = 

+1.50 V vs SCE) to oxidize  carboxylates salts (+1.2 V  E1/2   

+1.5 V vs SCE).[13] Notably, Gilmour’s group reported that 

photoexcited RF is able to oxidize cinnamic acids and biaryl 

carboxylic acids, in the absence of any external base, to generate 

the corresponding carboxyl radical.[14] It was proposed that the 
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flavin moiety (pKa of RFH• = 8.3 in H2O) can deprotonate the 

aliphatic carboxylic acid (pKa ~ 5 in H2O), before the PET, or in a 

formal proton-coupled electron transfer (PCET). In line with these 

results, MacMillan’s group reported that riboflavin tetrabutyrate 

photocatalyzes the decarboxylative alkylation of peptides at the 

C-terminal carboxylic acid site more efficiently under mildly acidic 

conditions (pH 3.5).[15] Inspired by these findings, we have 

developed very recently a protocol in which a riboflavin 

tetraacetate (RFTA) acts as base and photocatalyst in the 

decarboxylative cyanation of aliphatic carboxylic acids, avoiding 

the use of stoichiometric bases.[16] Thus, we decided to extend the 

application of this economic, user-friendly and sustainable 

protocol to generate alkyl radicals (Scheme 1b) and explore other 

organic transformations. It is known that nucleophilic alkyl radicals 

are rapidly added to electron-deficient alkenes, generating stable 

radical intermediates, that can easily eliminate a sulfonyl radical 

from the  position  (Scheme 1c).[17] In this context, we planned 

to examine the direct decarboxylative allylation of aliphatic 

carboxylic acids with allylsulfones using visible light and RFTA 

without any other additive. Our interest on this radical allylation 

stems from the fact that both substrates- carboxylic acids and allyl 

sulfones- are readily available, and the resulting alkene could 

serve as a versatile precursor by synthetic manipulations of the 

allyl moiety. Moreover, we also decided to examine 2-

(phenylsulfonyl)benzothiazole as radical acceptor to obtain 2-

alkyl benzothiazole derivatives,[18] an heterocyclic family with 

multiple bioactivities.[19] 

A fast and chemoselective photocatalytic decarboxylative 

allylation was recently developed (Scheme 2a), but using N-

acyloxyphthalimides, [Ru(bpy)3](PF6)2 as photocatalyst and 

stoichiometric amounts of reductants.[20] The silver catalyzed 

direct decarboxylative allylation of carboxylic acids (Scheme 2b) 

was also recently developed, showing broad substrate scope, but 

in this case K2S2O8 was required in stoichiometric amounts to 

regenerate the Ag(II) catalyst.[21] The direct photocatalytic 

allylation of carboxylic acids via a redox-neutral process was not 

developed until very recently using Ir(ppy)2(bpy)PF6 as catalyst, 

and stoichiometric amounts of Cs2(CO3), although it was limited 

to N-arylglycine derivatives (Scheme 2c).[22] Herein we report our 

results on the direct and redox-neutral photocatalytic allylation of 

carboxylic acids (Scheme 2d). 

 

Scheme 2. Precedents in the photocatalytic decarboxylative allylation of 

carboxylic acids with allyl sulfones. 

Results and Discussion 

As in our previous communication, we have chosen RFTA [23] as 

the photocatalyst for this study because it shows better solubility 

in organic solvents, greater photostability and is less likely than 

RF to form aggregates through hydrogen bonding interactions.[24] 

A key feature in our redox-neutral visible light-promoted 

decarboxylative allylation of carboxylic acids with allylsulfones is 

the turnover of the RFTA catalyst with the phenyl sulfonyl radical 

(PhSO2
•). In our reaction design, (Scheme 3) a formal proton-

coupled electron transfer between the photoexcited RFTA* and 

the carboxylic acid would explain the generation of alkyl radicals 

in the absence of base. Alternatively, it is plausible that a small 

fraction of in situ formed [RFTA]• ̶  deprotonates the carboxylic 

acid to give the corresponding carboxylate,[25] which in turn would 

be oxidized by the long-lived triplet-excited state of the flavin, 

generating the alkyl radical after rapid decarboxylation.[26] The 

addition of alkyl radicals to electron-deficient allylsulfones should 

be relatively fast (k ~ 106 M-1s-1),[20] and must be followed by a 

radical fragmentation to obtain the desired alkene. In the same 

event is produced the stabilized phenyl sulfonyl radical, which is 

easily reduced [E1/2(PhSO2
•/PhSO2

-) = +0.50 V vs SCE][27] by the 

hydroflavin radical [E1/2(RFTA/RFTAH•) ≈ -0.60 V vs SCE],[28] 

thereby closing the catalytic cycle after proton transfer. According 

to the redox potentials involved, this electron transfer is highly 

exergonic (∆𝐺𝐸𝑇 ≈  −25 𝑘𝑐𝑎𝑙/𝑚𝑜𝑙). However, we can not rule out 

a hydrogen atom abstraction by phenyl sulfonyl radical from the 

hydroflavin radical to complete the photoredox neutral catalytic 

cycle.  

 

Scheme 3. Plausible mechanism for our photocatalytic decarboxylative 

allylation of carboxylic acids. 

Our studies began using 2-phenoxypropanoic acid (1a) and butyl 

2-((phenylsulfonyl)methyl)acrylate (2a) as model substrates to 

screen different conditions for the decarboxylative allylation 

reaction (Table 1). When the reaction was performed using 

degassed MeCN (argon sparging over 10 min) and RFTA (5 

mol-%) as photocatalyst, under irradiation with blue LEDs (λmax 
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455 nm, 15 ± 2 mW/cm2) at room temperature, the desired 

product 3aa was obtained in 77% yield after 22 h (entry 1). 

Notably, using a higher load of RFTA (entry 2) did not provide any 

significant advantage over the previous conditions. Moreover, 

other solvent systems (entries 3 and 4) or the addition of an 

organic base (entry 5) in stoichiometric amount had a deleterious 

effect on the product yield. Incomplete conversion was observed 

when the reaction was run for only 8 h (entry 6). Furthermore, 

when the reaction was not degassed, product 3aa was also 

obtained in a diminished yield (entry 7). Finally, control 

experiments revealed that both the light and the photocatalyst are 

required to the reaction takes place (entries 8 and 9). It is worth 

of note that although the allyl sulfone is frequently used in large 

excess (3 – 4 equiv) to minimize other competing reactions, we 

have optimized our reaction using an almost perfect stoichiometry. 

Table 1. Optimization of the decarboxylative allylation. 

 
Entry Modification from standard 

conditions 

Yield (%)[a] 

1 none 77 

2 RFTA (10 mol-%) 78 

3 In MeCN/H2O (2:1) 41 

4 In MeOH 33 

5 DABCO (1 equiv) 27 

6 8 h 46 

7 No degassing  44 

8 No photocatalyst 0 

9 No light 0 

[a] Yield determined by GC using adamantane as internal standard. 

 

Under our optimized reaction conditions, we examined different 

carboxylic acids with allylsulfone 2a (Scheme 4). We were 

pleased to observe that different α-oxo carboxylic acids- including 

secondary, tertiary and even primary- were suitable substrates, 

giving the desired products (3aa–3ia) from moderate to good 

yields. Interestingly, the ribosic acid derivative afforded the 

desired product 3ha in good yield as a single isomer with retention 

of the configuration,[29] although a longer time and two portions of 

5 mol-% of photocatalyst were required. Moreover, an α-

benzyloxy carboxylic acid was also tolerated with the catalytic 

protocol, although the corresponding product 3ia was obtained in 

relatively low yield. Remarkably, an α-thio- carboxylic acid was 

also compatible under the reaction conditions, giving the desired 

product 3ja in good yield, despite different possible parasitic 

reactions (e.g. overoxidation, homocoupling of intermediate 

radicals, hydrodecarboxylation, etc). In addition, an α-ketoacid 

was also a suitable substrate affording the desired ketone 3ka in 

a moderate yield. N-arylglycine derivatives were also well 

tolerated under the optimized conditions and the corresponding 

products (3la-3oa) were obtained from moderate to good yields. 

Similarly, a pyrrole-derived carboxylic acid afforded the desired 

product 3pa in good yield. Unfortunately, other common N-

protecting groups, such as Boc and Cbz, were not suitable to 

transform the alanine derivatives in useful synthetic yields. We 

also explored a few non-activated α-C carboxylic acids, but only 

the tertiary adamantly carboxylic acid gave product 3qa in 

moderate yield. The cyclohexyl- and sec-butyl carboxylic acids 

failed to give the desired products in significant amounts. 

 

 

Scheme 4. Scope of carboxylic acids on the decarboxylative allylation. [a] 

Yields are reported for isolated pure products at 0.25 mmol scale. [b] After 24 h, 

another 5 mol-% of RFTA was added and the reaction was run over 12 h.  

We also examined the scope of different allylsulfones under our 

optimized conditions, using 2-phenoxypropanoic acid as model 

substrate (Scheme 5). Terminal allylsulfones with different ester 

groups, including ethyl, benzyl, and allyl esters were compatible 

with this protocol, giving the corresponding products (3ab-3ad) in 

good yields. Other electron-withdrawing groups were also well 

tolerated in the terminal allylsulfones, such as chloro and 

phenylsulfone, giving the desired compounds 3ae and 3af in good 

yields. In addition, an electron-richer 2-phenylallylsulfone was 

also a suitable partner, likely by resonance stabilization of the 

benzylic radical intermediate, to provide product 3ag in a 

moderate yield. Moreover, internal allyl sulfone 2h was also tested, 

obtaining the terminal alkene 3ah in low yield after a difficult 

purification, as a 2:1 mixture of diastereoisomers. This result 

supports a regioselective alkyl radical addition to the double bond 

of the allyl sulfone, followed by -elimination of the sulfonyl radical 

(SH2’ pathway). Remarkably, the mild reaction conditions used 

were compatible with a broad range of functionalities, including: 

esters, ethers, phenyl rings, chloro substituents, ketals, thioethers, 

ketones, N-aryl amines, pyrroles, allyl groups, benzyl groups, 

sulfones and cyano groups. 
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Scheme 5. Allyl sulfone scope with carboxylic acid 1a. [a] Yields are reported 

for isolated pure products at 0.25 mmol scale. [b] 2 equiv of 1a were used. [c] 

Determined by 1H-NMR. 

To examine the synthetic utility of our direct decarboxylative 

allylation, we carried out the preparation of compound 3ba at 2 

mmol scale under batch conditions (Scheme 6). Although the 

product was obtained in a synthetically useful yield (48%), a 

significant decreased was observed compared to the reaction at 

0.25 mmol (68%).[30] Moreover, to show that the allyl moiety can 

also serve as a radical acceptor, we conducted the Giese 

decarboxylative alkylation using reaction conditions previously 

developed in our group.[31] Under these conditions, when 

carboxylic acid 1d was employed, compound 6 was obtained in 

an unoptimized 45% yield.  

 

 

Scheme 6. Preparation of 3ba at 2 mmol scale and Giese decarboxylative 

alkylation with carboxylic acid 1d. 

Evidence for the free radical involvement in these reactions 

follows from the observed inhibitory effect of TEMPO ((2,2,6,6-

tetramethylpiperidin-1-yl)oxyl, Scheme 7a) on the allylation 

reaction. Eventually, the corresponding radical was trapped by 

TEMPO on this experiment to form adduct 1b-TEMPO, which was 

detected by LC-MS. Additionally, when carboxylic acid 1q was 

submitted to the allylation conditions with sulfone 2a, the expected 

compound 3oa was isolated, but also compound 7 from a fast 5-

exo-trig radical addition followed by the allylation reaction 

(Scheme 7b). In order to support the proposed mechanism, it was 

also checked that carboxylic acid 1b was an efficient quencher of 

RFTA* luminescence’s, while the emission intensity of the 

photoexcited catalyst was not altered in the presence of 2a 

(Scheme 7c, details can be found in the supporting information). 

Finally, the quantum yield of the reaction of 1b and 2a resulted 

very low (Scheme 7d), supporting a closed photocatalytic cycle 

instead of a radical chain propagation.[32] 

 

 

Scheme 7. Mechanistic studies. 

We thus re-examined the reaction conditions to adapt our protocol 

for the decarboxylative arylation of aliphatic carboxylic acids, 

using 1b and 2-(phenylsulfonyl)benzothiazole (4) as substrates 

(Table 2). Under the same allylation conditions the desired 

compound 5b was obtained in moderate yield (entry 1). When 2 

equivalents of the carboxylic acid were used, the reaction yield 

was slightly improved (entry 2). Different solvent systems were 

also examined to facilitate the solubility of the aryl sulfone at the 

beginning of the reaction, but none of them furnished the desired 

product in a better yield (entries 3-5). Finally, when the load of 

photocatalyst was increased to 10 mol-% and the reaction was 

run over 36 h, the best result was obtained (entry 6). Notably, this 

reaction is slower than the allylation, likely by a higher steric 

demand in the addition of the alkyl radical to the carbon atom next 

to the bulky sulfonyl group. It is worth saying that we recognized 

that a possible solution to this problem would be the C2-alkylation 

of unsubstituted benzothiazoles, thereby less sterically hindered 

and more easily available starting materials.[33] However, the 

reaction of 1b with benzothiazole, using RFTA (10 mol-%) and air 

as terminal oxidant gave only traces of product 5b (not shown). 

 

 

 

 
 

10.1002/ejoc.201900888

A
cc

ep
te

d 
M

an
us

cr
ip

t

European Journal of Organic Chemistry

This article is protected by copyright. All rights reserved.



FULL PAPER    

 

 

 

 

 

Table 2. Re-examining reaction conditions for the decarboxylative arylation. 

 
Entry Modification from standard conditions Yield (%)a 

1 none 52 

2 2 equiv of 1b and 1 equiv of 4 60 

3 As in entry 2, but in 9:1 MeCN/EtOH 60 

4 As in entry 2, but in EtOH 50 

5 As in entry 2, but in acetone 52 

6 entry 2, but 10 mol-% of RFTA and 36 h 64 (95)[b] 

[a] Yields determined for isolated pure products. [b] Based on recovered 

compound 4. 

Having identified reasonably good reaction conditions, we 

screened some aliphatic carboxylic acids in the homolytic 

aromatic substitution (HAS) of 2-(phenylsulfonyl)benzothiazole 

(Scheme 8). As in the decarboxylative allylation, α-oxo carboxylic 

acids were suitable substrates in this transformation, obtaining 

the products 5a-5e in yields from moderate to good. It is worth 

noting that during the formation of compound 5d it was also 

observed the homocoupling of the corresponding radicals by GC-

MS. In the case of compound 5e the yield was also rather low, 

most likely due to a higher steric hindrance with the bulky radical 

involved in the transformation. Finally, the C2-α-aminomethylation 

of benzothiazole was accomplished using N-phenylglycine in our 

reaction conditions to obtain 5f in good yield. Other carboxylic 

acids, such as: clofibric acid (1c), 2-(p-tolylthio)acetic acid (1j) and 

phenoxyacetic acid (1e) failed to give the desired benzothiazole, 

observing mainly the corresponding hydrodecarboxylation by GC-

MS. Moreover, N-Boc phenylalanine gave only traces of the 

desired benzothiazole.  

 

 

Scheme 8. Carboxylic acids scope in the HAS of 4. [a] Yields are reported for 

isolated pure products at 0.25 mmol scale.  

In our previous decarboxylative cyanation with TsCN, using RFTA 

as base and photocatalyst, the range of successful carboxylic 

acids was broader, being α-N carbamates and non-activated α-C 

carboxylic acids also suitable substrates.[16] In this work, we have 

observed that α-thio-, tertiary α-oxo- and α-keto carboxylic acids 

were successful in the decarboxylative allylation, but not in the 

arylation reaction. It is evident that most successful carboxylic 

acids in these reactions have an α-substituent that stabilizes the 

radical by resonance, thereby increasing the energy of the SOMO 

and their reactivity with electron-deficient radical acceptors. From 

Kochi’s work it is known that decarboxylation (kdec) of arylacetoxy 

radicals generated via PET in carboxylate ion pairs lies in the 

range of 𝟏𝟎𝟗 𝒔−𝟏, competing with very fast back-electron transfer 

(kBET  ~𝟏𝟎𝟏𝟏 𝒔−𝟏 ).[2] In this study was also concluded that 

decarboxylation of α-oxo benzylic carboxylic acids to provide 

stabilized benziloxy radicals  is extremely fast (kdec ~𝟏𝟎𝟏𝟏 𝒔−𝟏 ). 

We thus reasoned that the success of these reactions depends 

on an extremely fast decarboxylation to override the back-

electron transfer. It is also important the use of very electrophilic 

radical acceptors (with low steric demand) that rapidly trap the 

generated radical (in very low concentration), whereas the 

sulfonyl radical is produced to regenerate the RFTA and reset a 

new catalytic cycle. From the simplified picture depicted in 

Scheme 9 it is also possible to anticipate that, if the reaction of 

the generated radical is not fast (kR1 or kR2), the hydrogen atom 

abstraction from RFTAH• would be possible 

(hydrodecarboxylation) or even deactivation of the catalyst by 

radical-radical coupling. 

 
Scheme 9. Different reactivity of carboxylic acids with the radical acceptors 

used. 

Conclusions 

In conclusion, we have demonstrated that the direct 

decarboxylative allylation of carboxylic acids with allylsulfones 

can be efficiently promoted at room temperature by visible light, 

using inexpensive RFTA as photocatalyst in the absence of base. 

The transformation is redox-neutral, avoiding the use of external 

additives and none of the reagents was used in large excess. 

Importantly, although the carboxylic acids required a heteroatom 

or a carbonyl group in the α-position, the mild reaction conditions 

used tolerate the presence of a wide range of functionalities. 

Moreover, some carboxylic acids were also successfully used 

under similar conditions in the decarboxylative homolytic aromatic 

substitution of 2-(phenylsulfonyl)benzothiazole, to obtain C2-

substituted benzothiazoles in moderate to good yields.  
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Experimental Section 

General Remarks: Reagents and solvents were purchased from different 

trading houses and were used without further purification, unless 

otherwise stated. Riboflavin Tetraacetate (RFTA) was prepared from 

commercial (-)-Riboflavin according to a reported procedure.[23] TLCs were 

performed on silica gel 60 F254, using aluminium plates and visualized by 

exposure with UV or stain with PMA (KMnO4.for compound 3qa). Flash 

chromatographies (FC) were carried out on handpacked columns of silica 

gel 60 (230 – 400 mesh). Infrared (IR) analysis was performed with a 

JASCO FT/IR 4100 spectrophotometer equipped with an ATR component. 

LRMS were performed in an AGILENT 6890N mass spectrometer coupled 

with a gas chromatographer (GC); the mobile phase was helium (2 

mL/min); HP-1 column of 12 m was used; temperature program starts at 

80 ºC for 3 min, then up to 270 ºC with a rate of 15 ºC/min, and 10 min at 

270 ºC, using the Electron Impact (EI) mode at 70 eV (unless otherwise 

indicated). HRMS analyses were carried out in an AGILENT 7200 using 

the Electron Impact (EI) mode at 70 eV by Q-TOF .1H-NMR spectra were 

recorded at 300 or 400 MHz for 1H-NMR and 75 or 101 MHz for 13C NMR, 

using CDCl3 as the solvent and referenced to CDCl3 (unless otherwise 

indicated). 13C NMR spectra were recorded with 1H-decoupling at 100 MHz 

and referenced to CDCl3 at 77.16 ppm. Reactions were irradiated in a 

PhotoRedOx Box Duo (EvoluchemTM) equipped with two lamps LED 

CREE XPE 18W (450-455 nm).  

General procedure for the decarboxylative allylation of carboxylic 

acids: The corresponding carboxylic acid (0.25 mmol) was added to a 2 

dram vial, followed by RFTA (6.8 mg, 0.0125 mmol, 5 mol-%), and a 

solution of 2 (0.275 mmol, 1.1 equiv) in MeCN (2.5 mL). Then, the vial was 

sealed with a septum and the reaction mixture was degassed by sparging 

with Ar for 10 min. Finally, the vial was equipped with an Ar balloon and 

the yellow homogeneous solution was stirred at 25 ºC under blue LEDs 

irradiation (λ = 455 nm, 15 ± 2 mW/cm2)[34] until full conversion or no 

progress of the reaction was observed by TLC or GC (generally 18 - 22 h). 

The solvent was removed under reduced pressure, affording a residue 

which was purified by FC. 

Butyl 2-methylene-4-phenoxypentanoate (3aa): Compound 3aa was 

prepared from 2-Phenoxypropanoic acid (1a) following the general 

procedure. It was purified by FC (100% Hexane to 90:10 Hexane/EtOAc) 

and obtained as a colorless oil (51 mg, 0.19 mmol, 77%): TLC Rf  0.54 

(95:5 Hexane/EtOAc); IR ν 3014, 1712, 1639, 1591, 1489, 1237, 1214, 

1157, 746 cm-1; 1H-NMR (300 MHz, CDCl3) δ 7.30 - 7.23 (m, 2H), 6.95 - 

6.89 (m, 3H), 6.24 (d, J = 1.5 Hz, 1H), 5.67 (dd, J = 2.5, 1.2 Hz, 1H), 4.61 

(h, J = 6.2 Hz, 1H), 4.16 (t, J = 6.6 Hz, 2H), 2.83 (ddd, J = 13.9, 6.6, 1.0 

Hz, 1H), 2.50 (ddd, J = 13.9, 6.3, 0.9 Hz, 1H), 1.71 - 1.61 (m, 2H), 1.46 - 

1.34 (m, 2H), 1.31 (d, J = 6.1 Hz, 3H), 0.94 (t, J = 7.3 Hz, 1H) ppm; 13C-

NMR (101 MHz, CDCl3) δ 167.3 (C), 158.0 (C), 137.2 (C), 129.6 (2 х CH), 

128.0 (CH2), 120.7 (CH), 116.0 (2 х CH), 72.1 (CH), 64.9 (CH2), 39.3 (CH2), 

19.8 (CH3), 19.4 (CH2), 13.9 (CH3) ppm; GC RT 11.15; LRMS (EI) m/z (%) 

= 262 (M+, 2), 169 (34), 121 (18), 113 (100), 95 (33), 94 (39), 87 (12), 67 

(19); HRMS (EI) Calcd. for C16H22O3 - C7H9O 153.0916, found 153.0913. 

Butyl 2-((2,3-dihydrobenzo[b][1,4]dioxin-2-yl)methyl)acrylate (3ba): 

Compound 3ba was prepared from 1,4-Benzodioxane-2-carboxylic acid 

(1b) following the general procedure. It was purified by FC (100% Hexane 

to 95:5 Hexane/EtOAc) and obtained as a pale-yellow oil (47 mg, 0.17 

mmol, 68%): TLC Rf 0.57 (95:5 Hexane/EtOAc); IR ν 2980, 2957, 2934, 

1716, 1381, 1274, 1244, 1210, 1193, 1156, 1146, 1105, 1091, 1060, 960, 

869, 755, 696 cm-1; 1H-NMR (300 MHz, CDCl3) δ 6.89 - 6.81 (m, 4H), 6.33 

(d, J = 1.3 Hz, 1H), 5.73 (d, J = 1.2 Hz, 1H), 4.41 - 4.32 (m, 1H), 4.24 (dd, 

J = 11.3, 2.3 Hz, 1H), 4.17 (t, J = 6.6 Hz, 2H), 3.93 (dd, J = 11.3, 6.8 Hz, 

1H), 2.72 (ddd, J = 14.3, 7.5, 0.8 Hz, 1H), 2.64 (ddd, J = 14.3, 5.8, 0.9 Hz, 

1H), 1.72 - 1.62 (m, 2H), 1.47 - 1.35 (m, 2H), 0.95 (t, J = 7.3 Hz, 3H) ppm; 

13C-NMR (75 MHz, CDCl3) δ 166.9 (C), 143.3 (C), 143.1 (C), 135.6 (C), 

128.5 (CH2), 121.7 (CH), 121.4 (CH), 117.5 (CH), 117.2 (CH), 71.5 (CH), 

67.4 (CH2), 65.0 (CH2), 33.8 (CH2), 30.8 (CH2), 19.4 (CH2), 13.6 (CH3) 

ppm; GC RT  12.44 min; LRMS (EI) m/z (%) = 276 (M+, 28), 135 (100), 134 

(10), 121 (12), 111 (16), 110 (11); HRMS (EI) Calcd. for C16H20O4 

276.1362, found 276.1363. 

Butyl 4-(4-chlorophenoxy)-4-methyl-2-methylenepentanoate (3ca): 

Compound 3ca was prepared from 2-(4-Chlorophenoxy)-2-

methylpropanoic acid (Clofibric Acid) (1c)[35] following the general 

procedure. It was purified by FC (100% Hexane to 95:5 Hexane/EtOAc) 

and obtained as a pale-yellow oil (47 mg, 0.15 mmol, 60%): TLC Rf 0.65 

(95:5 Hexane/EtOAc); IR ν 2969, 2939, 2878, 1721, 1625, 1584, 1488, 

1482, 1223, 1173, 1152, 1093, 949, 850, 814, 751 cm-1; 1H-NMR (300 MHz, 

CDCl3) δ 7.24 - 7.17 (m, 2H), 6.93 - 6.85 (m, 2H), 6.28 (d, J = 1.7 Hz, 1H), 

5.71 - 5.66 (m, 1H), 4.15 (t, J = 6.6 Hz, 2H), 2.75 (s, 2H), 1.71 - 1.57 (m, 

2H), 1.46 - 1.34 (m, 2H), 1.24 (s, 6H), 6.93 (t, J = 7.3 Hz, 3) ppm; 13C-NMR 

(101 MHz, CDCl3) δ 168.1 (C), 153.9 (C), 137.6 (C), 129.0 (2 х CH), 128.7 

(C), 128.2 (CH2), 125.3 (2 х CH), 80.7 (C), 64.9 (CH2), 43.4 (CH2), 30.8 

(CH2), 26.2 (2 х CH3), 19.3 (CH2), 13.8 (CH3) ppm; GC RT 12.78 min; 

LRMS (EI) m/z (%) = 183 (M+ - C6H4ClO, 13), 169 (11), 130 (29), 128 (88), 

127 (40), 126 (100), 125 (15), 111 (32), 109 (32), 108 (27), 81 (100), 80 

(31), 79 (40), 67 (11), 65 (23), 63 (10), 57 (11), 53 (15); HRMS (EI) Calcd. 

for C17H23ClO3 310.1336, found 310.1327. 

Butyl 2-methylene-4-(p-tolyloxy)butanoate (3da): Compound 3da was 

prepared from 2-(p-Tolyloxy)acetic acid (1d) following the general 

procedure. It was purified by FC (100% Hexane to 95:5 Hexane/EtOAc) 

and obtained as a colorless oil (53 mg, 0.20 mmol, 80%): TLC Rf 0.41 (95:5 

Hexane/EtOAc); IR ν 2988, 2956, 2934, 2871, 1740, 1714, 1511, 1372, 

1235, 1160, 1046, 1045, 817 cm-1; 1H-NMR (300 MHz, CDCl3) δ 7.07 (d, 

J = 9.2 Hz, 2H), 6.80 (d, J = 8.6 Hz, 2H), 6.28 (d, J = 1.3 Hz, 1H), 5.70 (dd, 

J = 2.5, 1.2 Hz, 1H), 4.17 (t, J = 6.6 Hz, 2H), 4.08 (t, J = 6.6 Hz, 2H), 2.78 

(td, J = 6.6, 0.8 Hz, 2H), 2.28 (s, 3H), 1.71 - 1.60 (m, 2H), 1.47 - 1.35 (m, 

2H), 0.94 (t, J = 7.3 Hz, 3H) ppm; 13C-NMR (101 MHz, CDCl3) δ 167.1 (C), 

156.7 (C), 137.1 (C), 130.1 (C), 130.0 (2 × CH), 127.2 (CH2), 114.6 (2 × 

CH), 66.4 (CH2), 64.9 (CH2), 32.1 (CH2), 30.8 (CH2), 20.6 (CH3), 19.4 

(CH2), 13.9 (CH3) ppm; GC RT 11.82 min; LRMS (EI) m/z (%) = 262 (M+, 

2), 155 (17), 108 (21), 107 (13), 99 (100), 91 (14), 81 (11), 77 (10), 53 (11); 

HRMS (EI) Calcd. for C16H22O3 262.1569, found 262.1563. 

Butyl 2-methylene-4-phenoxybutanoate (3ea): Compound 3ea was 

prepared from 2-Phenoxyacetic acid (1e), following the general procedure, 

but in this case 40 h of reaction were required. It was purified by FC (100% 

Hexane to 90:10 Hexane/EtOAc) and obtained as a colorless oil (32 mg, 

0.13 mmol, 50%): TLC Rf 0.65 (95:5 Hexane/EtOAc); IR ν 2824, 1713, 

1598, 1498, 1471, 1294, 1241, 1208, 1160, 1020, 949, 815, 799, 753, 692 

cm-1; 1H-NMR (300 MHz, CDCl3) δ 7.33 - 7.23 (m, 2H), 6.99 - 6.84 (m, 3H), 

6.28 (d, J = 1.2 Hz, 1H), 5.72 (d, J = 1.2 Hz, 1H), 4.17 (t, J = 6.6 Hz, 2H), 

4.12 (t, J = 6.6 Hz, 2H), 2.80 (td, J = 6.6, 0.8 Hz, 2H), 1.76 - 1.62 (m, 2H), 

1.41 (dq, J = 14.5, 7.3 Hz, 2H), 0.95 (t, J = 7.4 Hz, 3H) ppm; 13C-NMR (101 

MHz, CDCl3) δ 167.1 (C), 158.8 (C), 137.1 (C), 129.6 (2 × CH), 127.3 (CH2), 

120.9 (CH), 114.7 (2 × CH), 66.3 (CH2), 64.9 (CH2), 32.1 (CH2), 30.8 (CH2), 

19.4 (CH2), 13.9 (CH3) ppm; GC RT  13.32 min; LRMS (EI) m/z (%) = 248 

(M+, 3), 155 (28), 99 (100), 94 (18), 81 (12), 77 (12); HRMS (EI) Calcd. for 

C15H20O3 248.1412, found 248.1402. 

Butyl 4-(4-chlorophenoxy)-2-methylenebutanoate (3fa): Compound 

3fa was prepared from 2-(4-chlorophenoxy)acetic acid (1f) following the 

general procedure. It was purified by FC (100% Hexane to 90:10 

Hexane/EtOAc) and obtained as a colorless oil (28 mg, 0.10 mmol, 40%): 

TLC Rf 0.60 (95:5 Hexane/EtOAc); IR ν 2958, 2934, 2871, 1713, 1631, 

1596, 1579, 1493, 1471, 1281, 1241, 1210, 1159, 1033, 822 cm-1; 1H-NMR 

(300 MHz, CDCl3) δ 7.22 (d, J = 9.0 Hz, 2H), 6.82 (d, J = 9.0 Hz, 2H), 6.28 
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(d, J = 1.2 Hz, 1H), 5.70 (d, J = 1.2 Hz, 1H), 4.17 (t, J = 6.6 Hz, 2H), 4.08 

(t, J = 6.6 Hz, 2H), 2.78 (td, J = 6.6, 0.8 Hz, 2H), 1.71 - 1.62 (m, 2H), 1.41 

(dq, J = 14.4, 7.3 Hz, 2H), 0.94 (t, J = 7.3 Hz, 3H) ppm; 13C-NMR (101 

MHz, CDCl3) δ 167.0 (C), 157.5 (C), 136.9 (C), 129.4 (2 × CH), 125.7 (C), 

116.0 (2 × CH), 66.7 (CH2), 64.9 (CH2), 32.1 (CH2), 30.8 (CH2), 19.4 (CH2), 

13.9 (CH3) ppm; GC RT 12.47 min; LRMS (EI) m/z (%) = 282 (M+, 3), 155 

(21), 128 (15), 99 (100), 81 (10); HRMS (EI) Calcd. for C15H19ClO3 

282.1023, found 282.1000. 

Butyl 4-(2-methoxyphenoxy)-2-methylenebutanoate (3ga): Compound 

3ga was prepared from 2-(2-methoxyphenoxy)acetic acid (1g) following 

the general procedure. It was purified by FC (100% Hexane to 90:10 

Hexane/EtOAc) and obtained as a pale-yellow oil (38 mg, 0.14 mmol, 

55%): TLC Rf 0.38 (95:5 Hexane/EtOAc); IR ν 2962, 1716, 1631, 1501, 

1253, 1250, 1226, 1157, 1123, 1028, 742 cm-1; 1H-NMR (300 MHz, CDCl3) 

δ 6.98 - 6.85 (m, 4H), 6.29 (d, J = 1.3 Hz, 1H), 5.74 (dd, J = 2.4, 1.2 Hz, 

1H), 4.18 (dd, J = 6.8, 2.2 Hz, 2H), 4.16 (dd, J = 6.8, 1.8 Hz, 2H), 3.86 (s, 

3H), 2.85 (td, J = 7.0, 0.9 Hz, 2H), 1.71 - 1.61 (m, 2H), 1.41 (dq, J = 14.4, 

7.3 Hz, 2H), 0.94 (s, 3H) ppm; 13C-NMR (101 MHz, CDCl3) δ  167.1 (C), 

149.7 (C), 148.4 (C), 137.0 (C), 127.5 (CH2), 121.4 (CH), 121.1 (CH), 

113.7 (CH), 112.2 (CH), 67.7 (CH2), 64.9 (CH2), 56.1 (CH3), 32.1 (CH2), 

30.8 (CH2), 19.4 (CH2), 13.9 (CH3) ppm; GC RT 14.34 min; LRMS (EI) m/z 

(%) = 278 (M+, 1%), 155 (21), 124 (14), 109 (11), 99 (100), 81 (11); HRMS 

(EI) Calcd. for C16H22O4 278.1518, found 278.1521. 

Butyl 2-((3aR,6R,6aR)-6-methoxy-2,2-dimethyltetrahydrofuro[3,4-

d][1,3-dioxol-4-yl)methyl)acrylate (3ha): Compound 3ha was prepared 

from 2,3-O-isopropylidene-1-O-methyl-D-ribosic acid (1h) following the 

general procedure. In this case, after 24 h, another 5 mol-% of RFTA was 

added and the reaction was run for another 12 h. It was purified by FC 

(100% Hexane to 90:10 Hexane/EtOAc) and obtained as a yellow oil (57 

mg, 0.18 mmol, 70%, single diastereoisomer): TLC Rf 0.25 (94:5 

Hexane/EtOAc); IR ν 2976, 2961, 2939, 1715, 1379, 1266, 1244, 1208, 

1187, 1154, 1144, 1105, 1090, 1058, 960, 871, 695 cm-1; 1H-NMR (300 

MHz, CDCl3) δ 6.29 (d, J = 1.1 Hz, 1H), 5.67 (q, J = 1.2 Hz, 1H), 4.95 (s, 

1H), 4.60 (dd, J = 14.0, 6.2 Hz, 2H), 4.44 (td, J = 7.6, 0.5 Hz, 1H), 4.16 (t, 

J = 6.6 Hz, 2H), 3.33 (s, 3H), 2.59 (d, J = 7.7 Hz, 2H), 1.73 - 1.60 (m, 2H), 

1.47 (s, 3H), 1.44 - 1.37 (m, 2H), 1.30 (s, 3H), 0.94 (t, J = 7.3 Hz, 3H) ppm; 
13C-NMR (75 MHz, CDCl3) δ 166.9 (C), 137.1 (C), 127.4 (CH2), 112.5 (C), 

109.9 (CH), 85.6 (CH), 85.5 (CH), 83.8 (CH), 64.9 (CH2), 55.2 (CH3), 37.4 

(CH2), 30.8 (CH2), 26.6 (CH3), 25.2 (CH3), 19.4 (CH2), 13.9 (CH3) ppm; GC 

RT  11.64 min; LRMS (EI) m/z (%) = 299 (M+ - CH3, 17), 211 (18), 196 (25), 

174 (10), 173 (100), 171 (10), 169 (33), 141 (11), 140 (16), 139 (12), 123 

(12), 122 (14), 119 (26), 117 (29), 116 (10), 115 (29), 97 (18), 95 (34), 94 

(11), 87 (19), 85 (23), 59 (28), 58 (11), 57 (17), 55 (16); HRMS (EI) Calcd. 

for C16H26O6 314.1729, found 314.1727. 

Butyl 4-(benzyloxy)-2-methylenepentanoate (3ia): Compound 3ia was 

prepared from (R)-(+)-2-(Benzyloxy)propanoic acid (1i) following the 

general procedure. It was purified by FC (100% Hexane to 95:5 

Hexane/EtOAc) and obtained as a colorless oil (25 mg, 0.09 mmol, 35%): 

TLC Rf 0.40 (95:5 Hexane/EtOAc); IR ν 2968, 2930, 2901, 1715, 1453, 

1376, 1125, 1073, 909, 732, 697 cm-1; 1H-NMR (300 MHz, CDCl3) δ 7.38 

- 7.27 (m, 5H), 6.22 (d, J = 1.7 Hz, 1H), 5.62 (dd, J = 2.6, 1.1 Hz, 1H), 4.53 

(q, J = 11.8 Hz, 2H), 4.12 (t, J = 6.6 Hz, 2H), 3.73 (sext, J = 6.1 Hz, 1H), 

2.66 (ddd, J = 13.8, 6.8, 0.9 Hz, 1H), 2.43 (ddd, J = 13.8, 6.0, 1.0 Hz, 1H), 

1.68 - 1.58 (m, 2H), 1.39 (dq, J = 14.3, 7.3 Hz, 2H), 1.20 (d, J = 6.1 Hz, 

3H), 0.94 (t, J = 7.3 Hz, 3H) ppm; 13C-NMR (75 MHz, CDCl3) δ 167.4 (C), 

139.0 (C), 137.9 (C), 128.4 (2 × CH), 127.7 (2 × CH), 127.5 (CH2), 127.3 

(CH), 73.8 (CH), 70.7 (CH2), 64.7 (CH2), 39.6 (CH2), 30.8 (CH2), 19.8 (CH2), 

19.4 (CH2), 13.9 (CH3) ppm; GC RT  13.74 min; HRMS (EI) Calcd. for 

C17H24O3 276.1725, found 276.1711. 

Butyl 2-methylene-4-(p-tolylthio)butanoate (3ja): Compound 3ja was 

prepared from 2-(p-Tolylthio)acetic acid (1j)[20] following the general 

procedure. It was purified by FC (100% Hexane to 90:10 Hexane/EtOAc) 

and obtained as a colorless oil (45 mg, 0.16 mmol, 65%): TLC Rf 0.65 (95:5 

Hexane/EtOAc); IR ν 2962, 2936, 2874, 1710, 1634, 1489, 1177, 1173, 

1124, 947, 803 cm-1; 1H-NMR (300 MHz, CDCl3) δ 7.27 (d, J = 8.0 Hz, 2H), 

7.10 (d, J = 8.0 Hz, 2H), 6.21 (d, J = 1.2 Hz, 1H), 5.58 (d, J = 1.2 Hz, 1H), 

4.14 (t, J = 6.6 Hz, 2H), 3.04 (t, J = 7.7 Hz, 2H), 2.61 (t, J = 7.5 Hz, 2H), 

2.32 (s, 3H), 1.69 - 1.60 (m, 2H), 1.46 - 1.33 (m, 2H), 0.94 (t, J = 7.3 Hz, 

3H) ppm; 13C-NMR (101 MHz, CDCl3) δ 166.9 (C), 138.9 (C), 136.3 (C), 

132.3 (C), 130.2 (2 × CH), 129.8 (2 × CH), 126.6 (CH2), 64.8 (CH2), 33.2 

(CH2), 32.4 (CH2), 30.8 (CH2), 21.1 (CH3), 19.4 (CH2), 13.9 (CH3) ppm; GC 

RT 12.85 min; LRMS (EI) m/z (%) = 278 (M+, 35), 205 (10), 137 (100), 124 

(10), 99 (82), 91 (18); HRMS (EI) Calcd. for C16H22O2S 278.1341, found 

278.1350. 

Butyl 2-methylene-4-oxo-4-phenylbutanoate (3ka): Compound 3ka 

was prepared from 2-Oxo-2-phenylacetic acid (1k) following the general 

procedure. It was purified by FC (100% Hexane to 85:15 Hexane/EtOAc) 

and obtained as a pale-yellow oil (30 mg, 0.12 mmol, 48%): TLC Rf 0.32 

(95:5 Hexane/EtOAc); IR ν 2970, 1713, 1685, 1325, 1303, 1212, 1147, 

910, 752, 730 cm-1; 1H-NMR (300 MHz, CDCl3) δ 8.01 - 7.95 (m, 2H), 7.63 

- 7.53 (m, 1H), 7.51 - 7.43 (m, 2H), 6.40 (d, J = 1.0 Hz, 1H), 5.69 (d, J = 

1.1 Hz, 1H), 4.15 (t, J = 6.6 Hz, 2H), 3.99 (d, J = 0.8 Hz, 2H), 1.68 - 1.54 

(m, 2H), 1.35 (dq, J = 14.4, 7.3 Hz, 2H), 0.89 (t, J = 7.3 Hz, 3H) ppm; 13C-

NMR (101 MHz, CDCl3) δ 197.0 (C), 166.6 (C), 136.7 (C), 135.0 (C), 133.4 

(CH), 128.8 (2 × CH), 128.5 (CH2), 128.4 (2 × CH), 65.0 (CH2), 41.8 (CH2), 

30.7 (CH2), 19.3 (CH2), 13.8 (CH3) ppm; GC RT 13.71 min; LRMS (EI) m/z 

(%) = 173 (M+ - C4H9O, 7), 172 (12), 106 (8), 105 (100), 77 (28); HRMS 

(EI) Calcd. for C15H18O3 246.1256, found 246.1245. 

Butyl 2-methylene-4-(phenylamino)butanoate (3la): Compound 3la 

was prepared from (N)-Phenylglycine (1l) following the general procedure. 

It was purified by FC (100% Hexane to 90:10 Hexane/EtOAc) and obtained 

as a colorless oil (39 mg, 0.15 mmol, 60%): TLC Rf 0.29 (95:5 

Hexane/EtOAc); IR ν 2969, 2901, 1707, 1603, 1508, 1215, 1066, 908, 754, 

731 cm-1; 1H-NMR (300 MHz, CDCl3) δ 7.23 - 7.14 (m, 2H), 6.73 (t, J = 7.3 

Hz, 1H), 6.67 (d, J = 7.7 Hz, 2H), 6.25 (d, J = 1.3 Hz, 1H), 5.63 (d, J = 1.2 

Hz, 1H), 4.17 (t, J = 6.6 Hz, 2H), 3.31 (t, J = 6.8 Hz, 2H), 2.64 (td, J = 6.8, 

0.7 Hz, 2H), 1.77 - 1.59 (m, 2H), 1.43 - 1.40 (m, 2H), 0.95 (t, J = 7.3 Hz, 

3H) ppm; 13C-NMR (101 MHz, CDCl3) δ 167.2 (C), 147.5 (C), 138.3 (C), 

129.4 (2 × CH), 126.9 (CH2), 118.0 (CH), 113.5 (2 × CH), 65.0 (CH2), 43.4 

(CH2), 32.0 (CH2), 30.8 (CH2), 19.4 (CH2), 13.9 (CH3) ppm; GC RT 11.99 

min; LRMS (EI) m/z (%) = 247 (M+, 14), 173 (24), 106 (100), 105 (15), 104 

(11), 77 (21); HRMS (EI) Calcd. for C15H21NO2 247.1572, found 247.1565. 

Butyl 2-methylene-4-(phenylamino)pentanoate (3ma): Compound 3ma 

was prepared from (N)-Phenylalanine (1m)[36] following the general 

procedure. It was purified by FC (100% Hexane to 95:5 Hexane/EtOAc) 

and obtained as a pale-yellow oil (26 mg, 0.10 mmol, 40%): TLC Rf 0.46 

(95:5 Hexane/EtOAc); IR ν 3398, 2961, 2929, 2870, 1710, 1602, 1500, 

1317, 1255, 1215, 1161, 946, 744, 689 cm-1; 1H-NMR (300 MHz, CDCl3) 

δ  7.19 - 7.12 (m, 2H), 6.69 - 6.60 (m, 3H), 6.22 (d, J = 1.5 Hz, 1H), 5.59 

(d, J = 1.3 Hz, 1H), 4.17 (t, J = 6.7 Hz, 2H), 3.71 (h, J = 6.4 Hz, 1H), 2.73 

(ddd, J = 13.8, 6.4, 1.0 Hz, 1H), 2.32 (ddd, J = 13.8, 6.9, 0.8 Hz, 1H), 1.71 

- 1.62 (m, 2H), 1.47 - 1.34 (m, 2H), 1.18 (d, J = 6.4 Hz, 3H), 0.94 (t, J = 

7.3Hz, 3H) ppm; 13C-NMR (101 MHz, CDCl3) δ 167.6 (C), 147.4 (C), 138.3 

(C), 129.4 (2 × CH), 127.3 (CH2), 117.2 (CH), 113.3 (2 × CH), 64.9 (CH2), 

48.1 (CH), 39.4 (CH2), 30.9 (CH2), 20.7 (CH3), 19.4 (CH2), 13.9 (CH3) ppm; 

GC RT = 13.98 min; LRMS (EI) m/z (%) = 261 (M+, 4), 121 (11), 120 (100), 

77 (11); HRMS (EI) Calcd. for C16H23NO2 261.1729, found 261.1735. 

Butyl 4-((2-methoxyphenyl)amino)-2-methylenebutanoate (3na): 

Compound 3na was prepared from (2-Methoxyphenyl)glycine (1n)[22] 
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following the general procedure. It was purified by FC (100% Hexane to 

95:5 Hexane/EtOAc) and obtained as a pale-yellow oil (31 mg, 0.11 mmol, 

45%): TLC Rf 0.45 (95:5 Hexane/EtOAc); IR ν 2960, 2901, 1713, 1602, 

1512, 1244, 1222, 1156, 1124, 1028, 946 cm-1; 1H-NMR (300 MHz, CDCl3) 

δ  6.93 - 6.83 (m, 1H), 6.81 - 6.74 (m, 1H), 6.74 - 6.64 (m, 2H), 6.25 (d, J 

= 1.3 Hz, 1H), 5.62 (d, J = 1.2 Hz, 1H), 4.17 (t, J = 6.6 Hz, 2H), 3.84 (s, 

3H), 3.32 (t, J = 7.0 Hz, 2H), 2.66 (t, J = 6.7 Hz, 2H), 1.75 - 1.60 (m, 2H), 

1.42 (dq, J = 14.4, 7.3 Hz, 2H), 0.95 (t, J = 7.3 Hz, 3H) ppm; 13C-NMR (101 

MHz, CDCl3) δ 167.2 (C), 147.2 (C), 138.3 (CH2), 137.6 (C), 126.7 (CH), 

121.5 (CH), 117.1 (C), 110.5 (CH), 109.7 (CH), 64.9 (CH2), 55.6 (CH3), 

43.0 (CH2), 32.0 (CH2), 30.8 (CH2), 19.4 (CH2), 13.9 (CH3) ppm; GC RT 

15.0 min; LRMS (EI) m/z (%) = 277 (M+, 16), 136 (100), 121 (14), 120 (17); 

HRMS (EI) Calcd. for C16H23NO3 277.1678, found 277.1678. 

Butyl 4-((4-bromophenyl)amino)-2-methylenebutanoate (3oa): 

Compound 3oa was prepared from (4-Bromophenyl)glycine (1o)[22] 

following the general procedure. It was purified by FC (100% Hexane to 

90:10 Hexane/EtOAc) and obtained as a pale-yellow oil (30 mg, 0.09 mmol, 

35%): TLC Rf 0.44 (95:5 Hexane/EtOAc); 1H-NMR (300 MHz, CDCl3) δ 

7.27 - 7.21 (m, 2H), 6.53 - 6.48 (m, 2H), 6.24 (d, J = 1.3 Hz, 1H), 5.62 (d, 

J = 1.2 Hz, 1H), 4.17 (t, J = 6.6 Hz, 2H), 3.26 (t, J = 6.8 Hz, 2H), 2.61 (td, 

J = 6.8, 0.7 Hz, 2H), 1.71 - 1.62 (m, 2H), 1.47 - 1.35 (m, 2H), 0.95 (t, J = 

7.3 Hz, 3H) ppm; 13C-NMR (101 MHz, CDCl3) δ 167.2 (C), 146.9 (C), 138.2 

(C), 132.1 (2 × CH), 127.0 (CH), 114.7 (2 × CH), 109.2 (C), 65.0 (CH2), 

43.2 (CH2), 31.9 (CH2), 30.8 (CH2), 19.4 (CH2), 13.9 (CH3)  ppm; GC RT  

14.10 min; LRMS (EI) m/z (%) = 327 (M+ 81Br,  13), 325 (M+ 79Br, 14), 186 

(95), 185 (11), 184 (100), 105 (11); HRMS (EI) Calcd. for C15H20BrNO2 

325.0677, found 325.0650. 

Butyl 2-methylene-4-(1H-pyrrol)-1-yl)pentanoate (3pa): Compound 

3pa was prepared from 2-(1H-Pyrrol-1-yl)propanoic acid (1p)[37] following 

the general procedure. It was purified by FC (100% Hexane to 95:5 

Hexane/EtOAc) and obtained as a colorless oil (35 mg, 0.15 mmol, 58%): 

TLC Rf 0.25 (95:5 Hexane/EtOAc); IR ν 3023, 2955, 2928, 2871, 1707, 

1631, 1487, 1220, 1165, 749 cm-1; 1H-NMR (300 MHz, CDCl3) δ 6.67 (t, J 

= 2.1 Hz, 2H), 6.11 (t, J = 2.0 Hz, 2H), 6.08 (d, J = 1.4 Hz, 1H), 5.31 (d, J 

= 1.2 Hz, 1H), 4.32 (dq, J = 13.4, 6.8 Hz, 1H), 4.16 (t, J = 6.6 Hz, 2H), 2.75 

- 2.59 (m, 2H), 1.73 - 1.49 (m, 2H), 1.47 (t, J = 5.3 Hz, 2H), 1.45 - 1.35 (m, 

2H), 0.96 (t, J = 7.3 Hz, 3H) ppm; 13C-NMR (75 MHz, CDCl3) δ 170.0 (C), 

136.9 (C), 127.8 (CH2), 118.6 (2 × CH), 107.8 (2 × CH), 64.9 (CH2), 54.4 

(CH), 41.5 (CH2), 30.8 (CH2), 21.7 (CH3), 19.4 (CH2), 13.9 (CH3) ppm; GC 

RT  12.12 min; LRMS (EI) m/z (%) = 235 (M+, 28), 178 (53), 163 (12), 134 

(77), 133 (17), 132 (19), 118 (17), 117 (15), 94 (100); HRMS (EI) Calcd. 

for C14H21NO2 235.1572, found 235.1568. 

Butyl 2-(((3r,5r,7r)-adamantan-1-yl)methyl)acrylate (3qa): It was 

prepared from adamantane-1-carboxylic acid (1q, 2 equiv) following the 

general procedure, but degasification was performed by three cycles of 

freeze-pump-thaw. It was purified by FC (100% Hexane to 95:5 

Hexane/EtOAc) and obtained as a colorless oil (27 mg, 0.10 mmol, 40%): 

TLC Rf 0.88 (90:10 Hexane/EtOAc); IR ν  2903, 2847, 1718, 1176, 1132, 

1059, 806 cm-1; 1H-NMR (300 MHz, CDCl3) 6.19 (d, J = 1.9 Hz, 1H), 5.44 

– 5.40 (m, 1H), 4.15 (t, J = 6.7 Hz, 2H), 2.17 (s, 2H), 1.95 (br s, 3H), 1.74 

– 1.57 (m, 12H), 1.47 -1.46 (m, 4H), 0.97 (t, J = 7.3 Hz, 3H) ppm; 13C NMR 

(101 MHz, CDCl3) δ 168.5 (C), 137.8 (C), 127.0 (CH2), 64.67 (CH2), 45.6 

(CH2), 42.2 (3 x CH2), 37.1 (3 x CH2), 33.4 (C), 30.8 (CH2), 28.8 (3 x CH), 

19.39 (CH2), 13.88 (CH3) ppm; GC RT  12.33 min; LRMS (EI) m/z (%) = 

276 (M+, 1), 203 (2), 136 (11), 135 (100), 79 (10); HRMS (EI) Calcd. for 

C18H28O2 276.2089, found 276.2088. 

Ethyl 2-methylene-4-phenoxypentanoate (3ab): Compound 3ab was 

prepared from 2b after 12 h, following the general procedure. It was 

purified by FC (100% Hexane to 90:10 Hexane/EtOAc) and obtained as a 

colorless oil (45 mg, 0.19 mmol, 76%): TLC Rf 0.54 (98:2 Hexane/EtOAc); 

IR ν 2985, 2976, 2901, 1712, 1599, 1586, 1491, 1406, 1394, 1381, 1241, 

1231, 1174, 1157, 1076, 1066, 947, 891, 752, 692 cm-1; 1H-NMR (300 MHz, 

CDCl3) δ 7.31 - 7.22 (m, 2H), 6.95 - 6.92 (m, 3H), 6.25 (d, J = 1.5 Hz, 1H), 

5.68 (d, J = 1.2 Hz, 1H), 4.61 (h, J = 6.2 Hz, 1H), 4.22 (q, J = 7.1 Hz, 2H), 

2.83 (ddd, J = 13.9, 6.5, 0.9 Hz, 1H), 2.50 (ddd, J = 13.9, 6.4, 0.8 Hz, 1H), 

1.31 (d, J = 6.2 Hz, 3H), 1.30 (t, J = 7.2 Hz, 3H) ppm; 13C-NMR (101 MHz, 

CDCl3) δ 167.2 (C), 158.0 (C), 137.1 (C), 129.6 (2 × CH), 128.0 (CH2), 

120.7 (CH), 115.9 (2 × CH), 72.1 (CH), 61.0 (CH2), 39.2 (CH2), 19.8 (CH3), 

14.3 (CH3) ppm; GC RT 10.05 min; LRMS (EI) m/z (%) = 234 (M+, 4), 189 

(11), 141 (100), 121 (25), 113 (73), 95 (57), 94 (73), 87 (27), 68 (11), 67 

(41), 66 (11), 65 (13); HRMS (EI) Calcd. for C14H8O3 234.1256, found 

234.162. 

Benzyl 2-methylene-4-phenoxypentanoate (3ac): Compound 3ac was 

prepared from 2c after 12 h, following the general procedure. It was 

purified by FC (100% Hexane to 90:10 Hexane/EtOAc) and obtained as a 

pale-yellow oil (47 mg, 0.16 mmol, 65%): TLC Rf 0.47 (95:5 

Hexane/EtOAc); IR ν 3014, 1712, 1639, 1591, 1489, 1237, 1214, 1157, 

746 cm-1; 1H-NMR (400 MHz, CDCl3) δ 7.40 - 7.32 (m, 5H), 7.25 - 7.19 (m, 

2H), 6.95  - 6.84 (m, 3H), 6.31 (d, J = 1.4 Hz, 1H), 5.72 (d, J = 1.2 Hz, 1H), 

5.21 (s, 2H), 4.61 (h, J = 6.2 Hz, 1H), 2.85 (ddd, J = 13.9, 6.7, 0.9 Hz, 1H), 

2.53 (ddd, J = 13.9, 6.2, 0.8 Hz, 1H), 1.30 (d, J = 6.1 Hz, 3H) ppm; 13C-

NMR (101 MHz, CDCl3) δ 167.0 (C), 158.0 (C), 136.9 (C), 136.0 (C), 129.6 

(2 × CH), 128.73 (2 × CH), 128.65 (CH), 128.4 (2 × CH), 128.3 (CH2), 

120.7 (CH), 115.9 (2 × CH), 72.0 (CH), 66.8 (CH2), 39.3 (CH2), 19.8 (CH3) 

ppm; GC RT 13.28 min; LRMS (EI) m/z (%) = 203 (M+ - C6H5O, 19), 94 (11), 

91 (100); HRMS (EI) Calcd. for C19H20O3 296.1412, found 296.1406. 

Allyl 2-methylene-4-phenoxypentanoate (3ad): Compound 3ad was 

prepared from 2d after 12 h, following the general procedure. It was 

purified by FC (100% Hexane to 90:10 Hexane/EtOAc) and obtained as a 

colorless oil (39 mg, 0.16 mmol, 65%): TLC Rf 0.49 (95:5 Hexane/EtOAc); 

IR ν 1720, 1636, 1493, 1211, 1169, 908, 748 cm-1; 1H-NMR (300 MHz, 

CDCl3) δ 7.30 - 7.24 (m, 2H), 6.95 - 6.89 (m, 3H), 6.29 (d, J = 1.4 Hz, 1H), 

5.95 (ddt, J = 17.2, 10.5, 5.7 Hz, 1H), 5.71 (d, J = 1.2 Hz, 1H), 5.34 (dq, J 

= 17.2, 1.5 Hz, 1H), 5.25 (ddd, J = 10.4, 2.6, 1.3 Hz, 1H), 4.67 (dt, J = 5.7, 

1.4 Hz, 2H), 4.64 - 4.59 (m, 1H), 2.84 (ddd, J = 13.9, 6.6, 0.9 Hz, 1H), 2.52 

(ddd, J = 13.9, 6.2, 0.9 Hz, 1H), 1.31 (d, J = 6.1 Hz, 3H) ppm; 13C-NMR 

(101 MHz, CDCl3) δ 166.8 (C), 158.0 (C), 136.9 (C), 132.2 (CH), 129.6 (2 

× CH), 128.5 (CH2), 120.8 (CH), 118.4 (CH2), 115.9 (2 × CH), 72.0 (CH), 

65.6 (CH2), 39.2 (CH2), 19.8 (CH3) ppm; GC RT 10.45 min; LRMS (EI) m/z 

(%) = 246 (M+, 5), 154 (10), 153 (100), 121 (25), 107 (15), 95 (25), 94 (54), 

91(10), 67 (30), 65 (10); HRMS (EI) Calcd. for C15H18O3 - C6H5O 153.0916, 

found 153.0916. 

((4-chloropent-4-en-2-yl)oxy)benzene (3ae): Compound 3ae was 

prepared from 2e after 12 h, following the general procedure. It was 

purified by FC (100% Hexane to 95:5 Hexane/EtOAc) and obtained as a 

colorless oil (30 mg, 0.15 mmol, 60%): TLC Rf 0.67 (98:2 Hexane/EtOAc); 

IR ν 3025, 2943, 1718, 1635, 1597, 1587, 1494, 1380, 1240, 1220, 1081, 

1016, 754 cm-1; 1H-NMR (300 MHz, CDCl3) δ 7.32 - 7.25 (m, 2H), 6.97 - 

6.90 (m, 3H), 5.25 (s, 2H), 4.70 (h, J = 6.2 Hz, 1H), 2.85 (dd, J = 14.5, 6.3 

Hz, 1H), 2.50 (dd, J = 14.4, 6.5 Hz, 1H), 1.35 (d, J = 6.1 Hz, 3H) ppm; 13C-

NMR (75 MHz, CDCl3) δ 157.8 (C), 138.9 (C), 129.7 (2 × CH), 121.1 (CH), 

116.2 (2 × CH), 115.0 (CH2), 71.2 (CH2), 46.1 (CH), 19.5 (CH3) ppm; GC 

RT 8.18 min; LRMS (EI) m/z (%) = 196 (M+, 11), 121 (41), 94 (100), 77 (16); 

HRMS (EI) Calcd. for C11H13ClO 196.0655, found 196.0658. 

((4-phenoxypent-1-en-2-yl)sulfonyl)benzene (3af): Compound 3af was 

prepared from 2f, following the general procedure. In this case the reaction 

was run during 40 h employing 2 equiv of 1a and 1 equiv of 2f. It was 

purified by FC (100% Hexane to 75:25 Hexane/EtOAc) and obtained as a 

white solid (31 mg, 0.10 mmol, 68%): TLC Rf 0.11 (95:5 Hexane/EtOAc); 

IR ν 3063, 2980, 2930, 1598, 1586, 1491, 1446, 1304, 1292, 1237, 1173, 
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1139, 1081, 952, 689 cm-1; 1H-NMR (300 MHz, CDCl3) δ 7.92 - 7.82 (m, 

2H), 7.65 - 7.57 (m, 1H), 7.55 - 7.45 (m, 2H), 7.30 - 7.20 (m, 2H), 6.98 - 

6.88 (m, 1H), 6.84 - 6.76 (m, 2H), 6.44 (br s, 1H), 5.93 (br s, 1H), 4.60 - 

4.50 (m, 1H), 2.66 (ddd, J = 15.4, 7.4, 0.8 Hz, 1H), 2.49 (ddd, J = 15.4, 5.2, 

1.0 Hz, 1H), 1.26 (d, J = 6.1 Hz, 3H) ppm; 13C-NMR (101 MHz, CDCl3) δ 

157.4 (C), 146.7 (C), 138.7 (C), 133.7 (CH), 129.7 (2 × CH), 129.4 (2 × 

CH), 128.3 (2 × CH), 127.0 (CH2), 121.2 (CH), 115.9 (2 × CH), 71.5 (CH), 

36.7 (CH2), 19.7 (CH3) ppm; GC RT 16.85 min; LRMS (EI) m/z (%) = 302 

(M+, 9), 210 (13), 209 (100), 143 (93), 125 (35), 121 (21), 94 (47), 77 (34), 

67 (26), 65 (11); HRMS (EI) Calcd. for C17H18O3S 302.0977, found 

302.0985. 

(4-phenoxypent-1-en-2-yl)benzene (3ag): Compound 3ag was prepared 

from 2g after 16 h, following the general procedure. It was purified by FC 

(100% Hexane to 95:5 Hexane/EtOAc) and obtained as a colorless oil (24 

mg, 0.10 mmol, 40%): TLC Rf 0.77 (95:5 Hexane/EtOAc); IR ν 2972, 2949, 

2930, 2911, 1598, 1493, 1375, 1231, 1174, 1081, 1067, 1054, 912, 781, 

750, 713, 692 cm-1; 1H-NMR (300 MHz, CDCl3) δ 7.45 - 7.16 (m, 7H), 6.94 

- 6.85 (m, 1H), 6.84 - 6.74 (m, 2H), 5.33 (d, J = 1.4 Hz, 1H), 5.18 (d, J = 

1.1 Hz, 1H), 4.45 - 4.38 (m, 1H), 3.08 (ddd, J = 14.1, 5.8, 0.9 Hz, 1H), 2.65 

(ddd, J = 14.1, 7.4, 0.9 Hz, 1H), 1.28 (d, J = 6.1 Hz, 3H) ppm; 13C-NMR 

(101 MHz, CDCl3) δ 157.9 (C), 145.3 (C), 141.2 (C), 129.5 (2 × CH), 128.5 

(2 × CH), 127.7 (CH), 126.4 (2 × CH), 120.8 (CH), 116.2 (2 × CH), 115.5 

(CH), 72.5 (CH), 42.7 (CH2), 19.7 (CH3) ppm; GC RT 11.33 min; LRMS (EI) 

m/z (%) = 238 (M+, 25), 146 (12), 145 (100), 144 (30), 143 (18), 130 (17), 

129 (84), 128 (21), 121 (54), 117 (21), 115 (18), 103 (33), 94 (17), 91 (22), 

77 (34), 65 (10); HRMS (EI) Calcd. for C17H18O 238.1358, found 238.1361. 

2-methylene-3-phenethyl-4-phenoxypentanenitrile (3ah): Compound 

2ah was prepared from 2h after 48 h, following the general procedure. In 

this case 2 equiv of 1a and 1 equiv of 2h were used. It was purified by FC 

(100% Hexane to 95:5 Hexane/EtOAc) and obtained as a colorless oil (26 

mg, 0.09 mmol, 32%  in a 3:2 dr according  to GC): TLC Rf 0.30 (95:5 

Hexane/EtOAc); IR ν 2950, 2925, 2166, 2036, 1598, 1492, 1238, 1078, 

944, 752, 694 cm-1; 1H-NMR (300 MHz, CDCl3) (mixture of 

diastereoisomers) δ 7.35 - 7.13 (m, 9H), 7.00 - 6.84 (m, 3H), 6.10 (d, J = 

0.6 Hz, 0.47H), 6.08 (d, J = 0.5 Hz, 0.44 H), 5.84 (brs, 0.47H), 5.82 (brs, 

0.47H), 4.45 - 4.33 (m, 1H), 2.84 - 2.68 (m, 1H), 2.61 - 2.36 (m, 2H), 2.28 

– 2.12 (m, 1H), 2.08 - 1.80 (m, 2H), 1.30 (d, J = 0.7 Hz, 1.5H), 1.28 (d, J = 

0.6 Hz, 1.5H) ppm; 13C-NMR (101 MHz, CDCl3) (mixture of 

diastereoisomers) δ 157.7, 157.6, 141.08, 141.05, 133.9, 133.7, 129.8, 

129.7, 128.67, 128.65, 128.5, 126.3, 126.28, 121.4, 121.3, 116.3, 116.0, 

75.1, 75.0, 50.31, 50.26, 33.31, 33.3, 30.9, 17.5, 17.4 ppm; GC 

Diastereoisomer A: RT 15.90 min; Diastereoisomer B: RT 16.00 min; LRMS 

(EI) Diastereoisomer A: m/z (%) = 291 (M+, 15), 121 (83), 105 (15), 94 (68), 

92 (11), 91 (100), 77 (25), 65 (13); Diastereoisomer B: m/z (%) = 291 (M+, 

14), 121 (81), 105 (16), 94 (73), 91 (100), 77 (23), 65 (14); HRMS (EI) 

Calcd. for C20H21NO 291.1623, found 291.1623. 

General procedure for the decarboxylative arylation of carboxylic 

acids: 2-(phenylsulfonyl)benzo[d]thiazole (4, 68.8 mg, 0.25 mmol, 1 equiv) 

was added to a 2 dram vial equipped with a stirring magnetic bar, followed 

by RFTA (13.6 mg, 0.025 mmol, 10 mol-%), the corresponding carboxylic 

acid (0.50 mmol, 2 equiv) and MeCN (2.5 mL). The vial was sealed with a 

septum and the reaction mixture submitted to three cycles of freeze-pump-

thaw. Finally, the vial was equipped with an Ar balloon and the yellow 

mixture[38] was stirred at 25 ºC under blue LEDs irradiation (λ = 455 nm, 

15 ± 2 mW/cm2)[34] until no progress was observed by TLC or GC 

(generally 36 h). The solvent was removed under reduced pressure, 

affording a residue which was purified by FC. 

2-(1-phenoxyethyl)benzo[d]thiazole (5a): Compound 5a was prepared 

from 2-Phenoxypropanoic acid (1a) following the general procedure for the 

decarboxylative arylation. It was purified by FC (100% Hexane to 90:10 

Hexane/EtOAc) and obtained as a white solid (38 mg, 0.15 mmol, 60%): 

TLC Rf 0.47 (95:5 Hexane/EtOAc); IR ν 2987, 2901, 1597, 1493, 1261, 

1217, 1065, 907, 753, 728 cm-1; 1H-NMR (400 MHz, CDCl3) δ 8.02 (d, J = 

8.1 Hz, 1H), 7.85 (d, J = 8.0 Hz, 1H), 7.53 - 7.45 (m, 1H), 7.42 - 7.35 (m, 

1H), 7.29 - 7.22 (m, 2H), 7.03 - 6.98 (m, 2H), 6.98 - 6.93 (m, 1H), 5.77 (q, 

J = 6.5 Hz, 1H), 1.85 (d, J = 6.5 Hz, 3H) ppm; 13C-NMR (101 MHz, CDCl3) 

175.1 (C), 157.4 (C), 152.9 (C), 134.9 (C), 129.7 (2 × CH), 126.3 (CH), 

125.3 (CH), 123.1 (CH), 122.1 (CH), 121.9 (CH), 115.9 (2 × CH), 74.7 (CH), 

23.0 (CH3) ppm; GC RT  14.96 min; LRMS (EI) m/z (%) = 255 (M+, 3), 163 

(11), 162 (100), 109 (14); HRMS (EI) Calcd. for C15H13NOS 255.0718, 

found 255.0706.  

2-(2,3-dihydrobenzo[b][1,4]dioxin-2-yl)benzo[d]thiazole (5b): 

Compound 5b was prepared from 1,4-Benzodioxane-2-carboxylic acid 

(1b) following the general procedure for the decarboxylative arylation. It 

was purified by FC (100% Hexane to 95:5 Hexane/EtOAc) and obtained 

as a white solid (43 mg, 0.16 mmol, 64%): TLC Rf 0.31 (95:5 

Hexane/EtOAc); IR ν 2987, 2901, 1494, 1263, 1215, 1074, 1053, 907, 748, 

729 cm-1; 1H-NMR (400 MHz, CDCl3) δ 8.06 (d, J = 8.2 Hz, 1H), 7.91 (d, J 

= 8.0 Hz, 1H), 7.55 - 7.90 (m, 1H), 7.45 - 7.39 (m, 1H), 7.12 - 7.04 (m, 1H), 

6.99 - 6.89 (m, 3H), 5.65 (dd, J = 6.9, 2.7 Hz, 1H), 4.72 (dd, J = 11.4, 2.7 

Hz, 1H), 4.43 (dd, J = 11.4, 6.9 Hz, 1H) ppm; 13C-NMR (101 MHz, CDCl3) 

δ 167.8 (C), 153.1 (C), 143.2 (C), 142.4 (C), 135.0 (C), 126.5 (CH), 125.6 

(CH), 123.4 (CH), 122.4 (CH), 122.2 (CH), 122.0 (CH), 117.7 (CH), 117.6 

(CH), 73.6 (CH), 67.2 (CH2) ppm; GC RT  16.66 min; LRMS (EI) m/z (%) = 

270 (M+ + 1, 11), 269 (63), 241 (11), 226 (11), 224 (36), 207 (11), 162 (12), 

161 (100), 160 (37), 135 (26), 108 (12), 69 (11). Characterization data 

matched that reported in the literature.[39] 

2-((2-methoxyphenoxy)methyl)benzo[d]thiazole (5c): Compound 5c 

was prepared from 2-(2-Methoxyphenoxy)acetic acid (1g) following the 

general procedure for the decarboxylative arylation. It was purified by FC 

(100% Hexane to 85:15 Hexane/EtOAc) and obtained as a yellow oil (41 

mg, 0.15 mmol, 60%): TLC Rf 0.16 (95:5 Hexane/EtOAc); IR ν 2971, 2901, 

1501, 1254, 1045, 1028, 905, 760, 724 cm-1; 1H-NMR (300 MHz, CDCl3) 

δ 8.03 (d, J = 8.0 Hz, 1H), 7.89 (d, J = 8.6 Hz, 1H), 7.53 - 7.45 (m, 1H), 

7.44 - 7.36 (m, 1H), 7.06 - 7.00 (m, 1H), 6.98 - 6.92 (m, 2H), 6.91 - 6.83 

(m, 1H), 5.56 (s, 2H), 3.92 (s, 3H) ppm; 13C-NMR (101 MHz, CDCl3) δ 

150.1 (C), 147.4 (C), 126.6 (C), 125.7 (C), 123.2 (CH), 122.9 (CH), 122.1 

(CH), 121.1 (2 × CH), 115.6 (C), 112.5 (2 × CH), 69.3 (CH2), 56.2 (CH3) 

ppm; GC RT 16.44 min; LRMS (EI) m/z (%) = 271 (M+, 22), 149 (13), 148 

(100); HRMS (EI) Calcd. for C15H13NO2S 271.0667, found 271.0667. 

2-(1-(benzyloxy)ethyl)benzo[d]thiazole (5d): Compound 5d was 

prepared from (R)-(+)-2-(Benzyloxy)propanoic acid (1i) following the 

general procedure for the decarboxylative arylation. It was purified by FC 

(100% Hexane to 90:10 Hexane/EtOAc) and obtained as a pale-yellow oil 

(27 mg, 0.10 mmol, 40%): TLC Rf 0.31 (95:5 Hexane/EtOAc); IR ν 2987, 

2901, 1508, 1395, 1215, 1066, 1056, 907, 747, 725 cm-1; 1H-NMR (300 

MHz, CDCl3) δ 8.03 (dd, J = 8.1, 0.5 Hz, 1H), 7.92 (dd, J = 7.9, 0.7 Hz, 

1H), 7.54 - 7.28 (m, 8H), 5.01 (q, J = 6.5 Hz, 1H), 4.69 (d, J = 11.6 Hz, 1H), 

4.60 (d, J = 11.6 Hz, 1H), 1.70 (d, J = 6.5 Hz, 3H) ppm; 13C-NMR (101 

MHz, CDCl3) δ 176.5 (C), 152.8 (C), 137.6 (C), 134.9 (C), 128.6 (2 × CH), 

128.1 (2 × CH), 128.0 (2 × CH), 126.2 (CH), 125.3 (CH), 123.0 (CH), 122.1 

(CH), 75.7 (CH), 71.8 (CH2), 22.7 (CH3) ppm; GC RT  15.58 min; LRMS 

(EI) m/z (%) = 224 (10), 164 (12), 163 (100), 162 (M+- OBn, 46), 91 (33); 

HRMS (EI) Calcd. for C9H9NS 163.0456, found 163.0451. 

2-((3aR,6R,6aR)-6-methoxy-2,2-dimethyltetrahydrofuro[3,4 

d][1,3]dioxol-4-yl)benzo[d]thiazole (5e): Compound 5e was prepared 

from 2,3-O-isopropylidene-1-O-methyl-D-ribosic acid (1h) following the 

general procedure for the decarboxylative arylation. It was purified by FC 

(100% Hexane to 90:10 Hexane/EtOAc) and obtained as a colorless oil 

(28 mg, 0.09 mmol, 35%): TLC Rf 0.23 (95:5 Hexane/EtOAc); IR ν 2986, 
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2934, 1598, 1493, 1446, 1375, 1306, 1239, 1141, 1084, 907, 867, 728, 

689 cm-1; 1H-NMR (300 MHz, CDCl3) δ 8.02 (d, J = 8.2 Hz, 1H), 7.88 (dd, 

J = 7.9, 0.7 Hz, 1H), 7.52 - 7.44 (m, 1H), 7.43 - 7.35 (m, 1H), 5.60 (dd, J = 

5.9, 1.1 Hz, 1H), 5.54 (br s, 1H), 5.17 (s, 1H), 4.69 (d, J = 5.9 Hz, 1H), 3.39 

(s, 3H), 1.57 (s, 3H), 1.57 (s, 3H) ppm; 13C-NMR (75 MHz, CDCl3) δ 170.2 

(C), 152.9 (C), 135.4 (C), 126.3 (CH), 125.4 (CH), 123.3 (CH), 121.8 (CH), 

113.1 (C), 111.1 (CH), 86.4 (CH), 85.4 (CH), 84.2 (CH), 56.2 (CH3), 26.7 

(CH3), 25.3 (CH3) ppm; GC RT  15.48 min; LRMS (EI) m/z (%) = 292 (M+ - 

CH3, 10), 218 (11), 208 (11), 207 (92), 190 (25), 189 (23), 165 (14), 164 

(39), 163 (30), 162 (17), 161 (100), 160 (22), 135 (25), 108 (12), 85 (15), 

58 (14); HRMS (EI) Calcd. for C15H17NO4S 307.0878, found 307.0883. 

N-(benzo[d]thiazol-2-ylmethyl)aniline (5f): Compound 5f was prepared 

from (N)-Phenylglycine (1l) following the general procedure for the 

decarboxylative arylation. It was purified by FC (100% Hexane to 80:20 

Hexane/EtOAc) and then treated with iPrOH/Hexanes to filtered out the 

starting sulfone and obtain 5f as a colorless oil (36 mg, 0.15 mmol, 60%): 

TLC Rf 0.13 (95:5 Hexane/EtOAc); IR ν 2987, 2901, 1216, 1066, 1056, 

906, 754, 727, 671 cm-1; 1H-NMR (300 MHz, CDCl3) δ 8.01 (d, J = 7.9 Hz, 

1H), 7.83 (dd, J = 8.0, 0.6 Hz, 1H), 7.51 - 7.45 (m, 1H), 7.39 - 7.34 (m, 1H), 

7.23 - 7.15 (m, 2H), 6.84 - 6.67 (m, 3H), 4.78 (s, 2H) ppm; 13C-NMR (101 

MHz, CDCl3) δ 173.2 (C), 153.6 (C), 147.0 (C), 129.5 (2 × CH), 126.1 (CH), 

125.0 (CH), 122.9 (CH), 121.9 (CH), 118.9 (C), 113.4 (2 × CH), 47.2 (CH2) 

ppm; GC RT  16.29 min; LRMS (EI) m/z (%) = 241 (M+ + 1, 18), 240 (100), 

239 (27), 238 (24), 237 (27), 210 (13), 149 (10), 148 (36), 136 (23), 135 

(11), 108 (10), 106 (76), 105 (13), 104 (12), 77 (30); HRMS (EI) Calcd. for 

C14H12N2S 240.0721, found 240.0718. 

General procedure for the synthesis of 3qa and 7: 2-(but-3-en-1-

yloxy)propanoic acid[40] (1q) (28.8 mg, 0.2 mmol, 1 equiv) was added to a 

2 dram vial equipped with a stirring magnetic bar, followed by RFTA (5.44 

mg, 0.01 mmol, 5 mol-%), and a solution of 2a (0.22 mmol, 56.4 mg, 1.1 

equiv) in MeCN (4 mL). The vial was sealed with a septum and the reaction 

mixture submitted to three cycles of freeze-pump-thaw. Finally, the vial 

was equipped with an Ar balloon and the yellow mixture was stirred at 25 

ºC under blue LEDs irradiation (λ = 455 nm, 15 ± 2 mW/cm2) until no 

progress was observed by TLC or GC (24 h). The solvent was removed 

under reduced pressure and pure compounds 3qa and 7 was obtained 

after purification by flash column chromatography. 

Butyl 4-(but-3-en-1-yloxy)-2-methylenepentanoate (3qa): Compound 

3qa was prepared from 2-(but-3-en-1-yloxy)propanoic acid (1q) following 

the procedure above described. It was purified by FC (100% Hexane to 

90:10 Hexane/EtOAc) and obtained as a colorless oil (15 mg, 0.06 mmol, 

30%): TLC Rf 0.75 (90:10 Hexane/EtOAc); IR ν 2960, 2930, 2873, 1716, 

1631, 1458, 1326, 1219, 1125, 912, 735 cm-1; 1H-NMR (300 MHz, CDCl3) 

δ 6.19 (d, J = 1.7 Hz, 1H), 5.81 (ddt, J = 17.0, 10.2, 6.7 Hz, 1H), 5.60 (dd, 

J = 2.7, 1.1 Hz, 1H), 5.12 - 4.97 (m, 2H), 4.15 (t, J = 6.6 Hz, 2H), 3.64 - 

3.39 (m, 3H), 2.59 (ddd, J = 13.8, 6.7, 1.0 Hz, 1H), 2.35 (ddd, J = 13.8, 6.7, 

1.0 Hz, 1H), 2.32 -2.25 (m, 2H), 1.72 – 1.59 (m, 2H), 1.50 – 1.35 (m, 2H), 

1.14 (d, J = 6.2 Hz, 3H), 0.95 (t, J = 7.3 Hz, 3H) ppm; 13C-NMR (101 MHz, 

CDCl3) δ 167.5 (C), 137.9 (C), 135.6 (CH), 127.2 (CH2), 116.3 (CH2), 74.3 

(CH), 68.2 (CH2), 64.7 (CH2), 39.4 (CH2), 34.7 (CH2), 30.8 (CH2), 19.8 

(CH2), 19.4 (CH3), 13.9 (CH3) ppm; GC RT 11.23 min; LRMS (EI) m/z (%) 

= 155 (M+ - C5H9O, 11), 113 (45), 111 (11), 99 (54), 95 (18), 81 (31), 69 

(18), 67 (14), 55 (100); HRMS (EI) Calcd. for C14H24O3 – C9H5O2 155.1072, 

found 155.1066. 

Butyl 2-methylene-4-[(2R,3S)-2-methyltetrahydrofuran-3-

yl)butanoate (7): Compound 7 was prepared from 2-(but-3-en-1-

yloxy)propanoic (1q) following the procedure above described. It was 

purified by FC (100% Hexane to 90:10 Hexane/EtOAc) and obtained as a 

colorless oil (10 mg, 0.04 mmol, 21%): TLC Rf 0.44 (90:10 Hexane/EtOAc); 

IR ν 2959, 2929, 2872, 1718, 1457, 1186, 1155, 1069, 941, 735 cm-1; 1H-

NMR (300 MHz, CDCl3) δ 6.15 (d, J = 1.4 Hz, 1H), 5.54 (dd, J = 2.7, 1.3 

Hz, 1H), 4.16 (t, J = 6.6 Hz, 2H), 4.07 (p, J = 6.5 Hz, 1H), 3.93 (td, J = 8.4, 

3.7 Hz, 1H), 3.69 (dd, J = 15.6, 8.3 Hz, 1H), 2.45 - 2.20 (m, 2H), 2.19 - 

1.95 (m, 2H), 1.75 - 1.57 (m, 5H), 1.47 - 1.36 (m, 2H), 1.08 (d, J = 6.5 Hz, 

3H), 0.95 (t, J = 7.3 Hz, 3H) ppm; 13C-NMR (101 MHz, CDCl3) δ 167.4, 

141.0, 124.7, 66.5, 64.7, 41.8, 31.11, 31.08, 30.8, 28.9, 19.4, 16.2, 13.9 

ppm; GC RT 12.61 min; LRMS (EI) m/z (%) = 167 (M+, 25), 166 (84), 151 

(48), 140 (18), 139 (10), 138 (20), 125 (20), 124 (16), 123 (39), 122 (20), 

121 (26), 112 (16), 111 (54), 110 (17), 109 (11), 108 (11), 107 (11), 105 

(10), 99 (11), 98 (28), 97 (66), 96 (25), 95 (100), 94 (40), 93 (30); HRMS 

(EI) Calcd. for C14H24O3 – C4H10O2 166.0994, found 166.099. 

Butyl 2-((2,3-dihydrobenzo[b][1,4]dioxin-2-yl)methyl)-4-(p-

tolyloxy)butanoate (6): Compound 1d (57 mg, 0.3 mmol, 1.5 equiv.) was 

added to a 2 dram vial equipped with a stirring magnetic bar, followed by 

a solution of 3ba (49.8 mg, 0.2 mmol, 1 equiv.) in MeCN (0.7 mL), Na2CO3 

(4.24 mg, 0.04 mmol, 20 mol-%) and [Mes-Acr]ClO4 (2.08 mg, 2.5 mol-%). 

Finally, H2O (0.3 mL) was added and the vial was sealed with a cap. The 

yellow solution was irradiated using blue LED’s and stirred at room 

temperature, without any inert atmosphere, until complete conversion was 

observed (monitored by TLC and/or GC, 22 h). The reaction mixture was 

concentrated under reduced pressure and the residue was purified by FC 

(100% Hexane to 90:10 Hexane/EtOAc) to obtain 6 as a colorless oil (36 

mg, 0.09 mmol, 45%): (~2:1 dr according to GC-MS); TLC Rf 0.47(90:10 

Hexane/EtOAc); IR ν 2965, 2926, 1729, 1510, 1494, 1264, 1241, 1175, 

1045, 817, 746 cm-1; 1H-NMR (400 MHz, CDCl3) (mixture of 

diastereoisomers) δ 7.07 (d, J = 8.2 Hz, 2H), 6.85 - 6.82 (m, 4H), 6.78 - 

6.76 (m, 2H), 4.25 - 3.87 (m, 6H), 3.11 - 2.85 (m, 1H), 2.28 (s, 3H), 2.21 - 

1.93 (m, 2H), 1.88 - 1.74 (m, 1H), 1.60 - 1.55 (m, 2H), 1.41 - 1.30 (m, 2H), 

0.94 – 0.77 (m, 3H) ppm; 13C-NMR (101 MHz, CDCl3) (mixture of 

diastereoisomers) δ 175.3, 156.7, 143.24, 143.15, 143.12, 130.20, 130.19, 

130.0, 121.7, 121.6, 121.48, 117.52, 117.51, 117.2, 114.53, 114.50, 71.3, 

68.1, 67.8, 65.7, 65.6, 64.84, 64.81, 39.0, 38.6, 33.4, 33.2, 32.5, 31.7, 30.7, 

20.6, 19.29, 19.28, 13.83,13.80 ppm; GC RT  Diastereoisomer A: 24.07 

min; Diastereoisomer B: 24.50 min LRMS (EI) m/z (%) = Diastereoisomer 

A: 398 (M+, 10), 325 (13), 291 (30), 236 (15), 235 (100), 149 (12), 147 (10), 

135 (26), 125 (10), 121 (17), 108 (10), 107 (11), 101 (10); Diastereoisomer 

B: 398 (M+, 11), 325 (13), 291 (27), 236 (14), 235 (100), 149 (11), 135 (22), 

121 (15); HRMS (EI) Calcd. for C24H30O5 398.2093, found 398.2081. 
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