1,430 research outputs found
Carbon mitigation in domains of high consumer lock-in
As climate policy needs to address all feasible ways to reduce carbon emissions, there is an increasing focus on demand-side solutions. Studies of household carbon footprints have allocated emissions during production to the consumption of the produced goods, and provided an understanding of what products and consumer actions cause significant emissions. Social scientists have investigated how attitudes, social norms, and structural factors shape salient behavior. Yet, there is often a disconnect as emission reductions through individual actions in the important domains of housing and mobility are challenging to attain due to lock-ins and structural constraints. Furthermore, most behavioral research focuses on actions that are easy to trace but of limited consequence as a share of total emissions. Here we study specific alternative consumption patterns seeking both to understand the behavioral and structural factors that determine those patterns and to quantify their effect on carbon footprints. We do so utilizing a survey on consumer behavioral, attitudinal, contextual and socio-demographic factors in four different regions in the EU. Some differences occur in terms of the driving forces behind behaviors and their carbon intensities. Based on observed differences in mobility carbon footprints across households, we find that the key determining element to reduced emissions is settlement density, while car ownership, rising income and long distances are associated with higher mobility footprints. For housing, our results indicate that changes in dwelling standards and larger household sizes may reduce energy needs and the reliance on fossil fuels. However, there remains a strong need for incentives to reduce the carbon intensity of heating and air travel. We discuss combined effects and the role of policy in overcoming structural barriers in domains where consumers as individuals have limited agency
Cocoa flavanols reduce N-terminal pro-B-type natriuretic peptide in patients with chronic heart failure
This work was supported by a grant (to R.C.) from BarryCallebaut Belgium NV. Assay of CT-proET-1 was supported by a grant from the Medical Research Council, UK (grant numberG0801509)
Plasma Pro-Endothelin-1 Peptide Concentrations Rise in Chronic Kidney Disease and Following Selective Endothelin A Receptor Antagonism
The new analyses described in this article were funded by the
Medical Research Council (Grant G0801509). Additional
funding was from the British Heart Foundation (Project Grant
PG/05/91), Encysive Pharmaceuticals, and Pfizer. Dr Dhaun
is supported by a British Heart Foundation Intermediate
Clinical Research Fellowship (FS/13/30/29994)
Causarum Investigatio and the Two Bell's Theorems of John Bell
"Bell's theorem" can refer to two different theorems that John Bell proved,
the first in 1964 and the second in 1976. His 1964 theorem is the
incompatibility of quantum phenomena with the joint assumptions of Locality and
Predetermination. His 1976 theorem is their incompatibility with the single
property of Local Causality. This is contrary to Bell's own later assertions,
that his 1964 theorem began with the assumption of Local Causality, even if not
by that name. Although the two Bell's theorems are logically equivalent, their
assumptions are not. Hence, the earlier and later theorems suggest quite
different conclusions, embraced by operationalists and realists, respectively.
The key issue is whether Locality or Local Causality is the appropriate notion
emanating from Relativistic Causality, and this rests on one's basic notion of
causation. For operationalists the appropriate notion is what is here called
the Principle of Agent-Causation, while for realists it is Reichenbach's
Principle of common cause. By breaking down the latter into even more basic
Postulates, it is possible to obtain a version of Bell's theorem in which each
camp could reject one assumption, happy that the remaining assumptions reflect
its weltanschauung. Formulating Bell's theorem in terms of causation is
fruitful not just for attempting to reconcile the two camps, but also for
better describing the ontology of different quantum interpretations and for
more deeply understanding the implications of Bell's marvellous work.Comment: 24 pages. Prepared for proceedings of the "Quantum [Un]speakables II"
conference (Vienna, 2014), to be published by Springe
Characterisation of preproendothelin-1 derived peptides identifies Endothelin-Like Domain Peptide as a modulator of Endothelin-1
These studies were supported by the
Medical Research Council (UK) (Grant G0801509), Community Fund of the National Lottery Charities Board,
William Harvey Research Foundation and British Cardiac Research Trust. The LC-MS/MS facility was supported
by Barts and the London Charity (297/2249)
Mapping the carbon footprint of EU regions
While the EU Commission has encouraged Member States to combine national and international climate change mitigation measures with subnational environmental policies, there has been little harmonized effort towards the quantification of embodied greenhouse gas (GHG) emissions from household consumption across European regions. This study develops an inventory of carbon footprints associated with household consumption for 177 regions in 27 EU countries, thus, making a key contribution for the incorporation of consumption-based accounting into local decision-making. Footprint calculations are based on consumer expenditure surveys and environmental and trade detail from the EXIOBASE 2.3 multiregional input-output database describing the world economy in 2007 at the detail of 43 countries, 5 rest-of-the-world regions and 200 product sectors. Our analysis highlights the spatial heterogeneity of embodied GHG emissions within multiregional countries with subnational ranges varying widely between 0.6 and 6.5 tCO2e/cap. The significant differences in regional contribution in terms of total and per capita emissions suggest notable differences with regards to climate change responsibility. The study further provides a breakdown of regional emissions by consumption categories (e.g. housing, mobility, food). In addition, our region-level study evaluates driving forces of carbon footprints through a set of socio-economic, geographic and technical factors. Income is singled out as the most important driver for a region's carbon footprint, although its explanatory power varies significantly across consumption domains. Additional factors that stand out as important on the regional level include household size, urban-rural typology, level of education, expenditure patterns, temperature, resource availability and carbon intensity of the electricity mix. The lack of cross-national region-level studies has so far prevented analysts from drawing broader policy conclusions that hold beyond national and regional borders
The application of predictive modelling for determining bio-environmental factors affecting the distribution of blackflies (Diptera: Simuliidae) in the Gilgel Gibe watershed in Southwest Ethiopia
Blackflies are important macroinvertebrate groups from a public health as well as ecological point of view. Determining the biological and environmental factors favouring or inhibiting the existence of blackflies could facilitate biomonitoring of rivers as well as control of disease vectors. The combined use of different predictive modelling techniques is known to improve identification of presence/absence and abundance of taxa in a given habitat. This approach enables better identification of the suitable habitat conditions or environmental constraints of a given taxon. Simuliidae larvae are important biological indicators as they are abundant in tropical aquatic ecosystems. Some of the blackfly groups are also important disease vectors in poor tropical countries. Our investigations aim to establish a combination of models able to identify the environmental factors and macroinvertebrate organisms that are favourable or inhibiting blackfly larvae existence in aquatic ecosystems. The models developed using macroinvertebrate predictors showed better performance than those based on environmental predictors. The identified environmental and macroinvertebrate parameters can be used to determine the distribution of blackflies, which in turn can help control river blindness in endemic tropical places. Through a combination of modelling techniques, a reliable method has been developed that explains environmental and biological relationships with the target organism, and, thus, can serve as a decision support tool for ecological management strategies
HIF1α activation in dendritic cells under sterile conditions promotes an anti-inflammatory phenotype through accumulation of intracellular lipids.
Obesity is among the leading causes of elevated cardiovascular disease mortality and morbidity. Adipose tissue dysfunction, insulin resistance and inflammation are recognized as important risk factors for the development of cardiovascular disorders in obesity. Hypoxia appears to be a key factor in adipose tissue dysfunction affecting not only adipocytes but also immune cell function. Here we examined the effect of hypoxia-induced transcription factor HIF1α activation on classical dendritic cell (cDCs) function during obesity. We found that deletion of Hif1α on cDCs results in enhanced adipose-tissue inflammation and atherosclerotic plaque formation in a mouse model of obesity. This effect is mediated by HIF1α-mediated increased lipid synthesis, accumulation of lipid droplets and alter synthesis of lipid mediators. Our findings demonstrate that HIF1α activation in cDCs is necessary to control vessel wall inflammation
A novel pathway producing dimethylsulphide in bacteria is widespread in soil environments
The volatile compound dimethylsulphide (DMS) is important in climate regulation, the sulphur cycle and signalling to higher organisms. Microbial catabolism of the marine osmolyte dimethylsulphoniopropionate (DMSP) is thought to be the major biological process generating DMS. Here we report the discovery and characterisation of the first gene for DMSP-independent DMS production in any bacterium. This gene, mddA, encodes a methyltransferase that methylates methanethiol (MeSH) and generates DMS. MddA functions in many taxonomically diverse bacteria including sediment-dwelling pseudomonads, nitrogen-fixing bradyrhizobia and cyanobacteria, and mycobacteria, including the pathogen Mycobacterium tuberculosis. The mddA gene is present in metagenomes from varied environments, being particularly abundant in soil environments, where it is predicted to occur in up to 76% of bacteria. This novel pathway may significantly contribute to global DMS emissions, especially in terrestrial environments, and could represent a shift from the notion that DMSP is the only significant precursor of DMS
Achimota Pararubulavirus 3: A New Bat-Derived Paramyxovirus of the Genus Pararubulavirus.
Bats are an important source of viral zoonoses, including paramyxoviruses. The paramyxoviral Pararubulavirus genus contains viruses mostly derived from bats that are common, diverse, distributed throughout the Old World, and known to be zoonotic. Here, we describe a new member of the genus Achimota pararubulavirus 3 (AchPV3) and its isolation from the urine of African straw-coloured fruit bats on primary bat kidneys cells. We sequenced and analysed the genome of AchPV3 relative to other Paramyxoviridae, revealing it to be similar to known pararubulaviruses. Phylogenetic analysis of AchPV3 revealed the failure of molecular detection in the urine sample from which AchPV3 was derived and an attachment protein most closely related with AchPV2-a pararubulavirus known to cause cross-species transmission. Together these findings add to the picture of pararubulaviruses, their sources, and variable zoonotic potential, which is key to our understanding of host restriction and spillover of bat-derived paramyxoviruses. AchPV3 represents a novel candidate zoonosis and an important tool for further study
- …