4,322 research outputs found
Bottom mixed layer oxygen dynamics in the Celtic Sea
The seasonally stratified continental shelf seas are highly productive, economically important environments which are under considerable pressure from human activity. Global dissolved oxygen concentrations have shown rapid reductions in response to anthropogenic forcing since at least the middle of the twentieth century. Oxygen consumption is at the same time linked to the cycling of atmospheric carbon, with oxygen being a proxy for carbon remineralisation and the release of CO2. In the seasonally stratified seas the bottom mixed layer (BML) is partially isolated from the atmosphere and is thus controlled by interplay between oxygen consumption processes, vertical and horizontal advection. Oxygen consumption rates can be both spatially and temporally dynamic, but these dynamics are often missed with incubation based techniques. Here we adopt a Bayesian approach to determining total BML oxygen consumption rates from a high resolution oxygen time-series. This incorporates both our knowledge and our uncertainty of the various processes which control the oxygen inventory. Total BML rates integrate both processes in the water column and at the sediment interface. These observations span the stratified period of the Celtic Sea and across both sandy and muddy sediment types. We show how horizontal advection, tidal forcing and vertical mixing together control the bottom mixed layer oxygen concentrations at various times over the stratified period. Our muddy-sand site shows cyclic spring-neap mediated changes in oxygen consumption driven by the frequent resuspension or ventilation of the seabed. We see evidence for prolonged periods of increased vertical mixing which provide the ventilation necessary to support the high rates of consumption observed
Biopsy confirmation of metastatic sites in breast cancer patients:clinical impact and future perspectives
Determination of hormone receptor (estrogen receptor and progesterone receptor) and human epidermal growth factor receptor 2 status in the primary tumor is clinically relevant to define breast cancer subtypes, clinical outcome,and the choice of therapy. Retrospective and prospective studies suggest that there is substantial discordance in receptor status between primary and recurrent breast cancer. Despite this evidence and current recommendations,the acquisition of tissue from metastatic deposits is not routine practice. As a consequence, therapeutic decisions for treatment in the metastatic setting are based on the features of the primary tumor. Reasons for this attitude include the invasiveness of the procedure and the unreliable outcome of biopsy, in particular for biopsies of lesions at complex visceral sites. Improvements in interventional radiology techniques mean that most metastatic sites are now accessible by minimally invasive methods, including surgery. In our opinion, since biopsies are diagnostic and changes in biological features between the primary and secondary tumors can occur, the routine biopsy of metastatic disease needs to be performed. In this review, we discuss the rationale for biopsy of suspected breast cancer metastases, review issues and caveats surrounding discordance of biomarker status between primary and metastatic tumors, and provide insights for deciding when to perform biopsy of suspected metastases and which one (s) to biopsy. We also speculate on the future translational implications for biopsy of suspected metastatic lesions in the context of clinical trials and the establishment of bio-banks of biopsy material taken from metastatic sites. We believe that such bio-banks will be important for exploring mechanisms of metastasis. In the future,advances in targeted therapy will depend on the availability of metastatic tissue
Fast cavity-enhanced atom detection with low noise and high fidelity
Cavity quantum electrodynamics describes the fundamental interactions between
light and matter, and how they can be controlled by shaping the local
environment. For example, optical microcavities allow high-efficiency detection
and manipulation of single atoms. In this regime fluctuations of atom number
are on the order of the mean number, which can lead to signal fluctuations in
excess of the noise on the incident probe field. Conversely, we demonstrate
that nonlinearities and multi-atom statistics can together serve to suppress
the effects of atomic fluctuations when making local density measurements on
clouds of cold atoms. We measure atom densities below 1 per cavity mode volume
near the photon shot-noise limit. This is in direct contrast to previous
experiments where fluctuations in atom number contribute significantly to the
noise. Atom detection is shown to be fast and efficient, reaching fidelities in
excess of 97% after 10 us and 99.9% after 30 us.Comment: 7 pages, 4 figures, 1 table; extensive changes to format and
discussion according to referee comments; published in Nature Communications
with open acces
A cross-national study on the antecedents of work–life balance from the fit and balance perspective
Drawing on the perceived work–family fit and balance perspective, this study investigates demands and resources as antecedents of work–life balance (WLB) across four countries (New Zealand, France, Italy and Spain), so as to provide empirical cross-national evidence. Using structural equation modelling analysis on a sample of 870 full time employees, we found that work demands, hours worked and family demands were negatively related to WLB, while job autonomy and supervisor support were positively related to WLB. We also found evidence that resources (job autonomy and supervisor support) moderated the relationships between demands and work–life balance, with high resources consistently buffering any detrimental influence of demands on WLB. Furthermore, our study identified additional predictors of WLB that were unique to some national contexts. For example, in France and Italy, overtime hours worked were negatively associated with WLB, while parental status was positively associated with WLB. Overall, the implications for theory and practice are discussed.Peer ReviewedPostprint (author's final draft
Construct-level predictive validity of educational attainment and intellectual aptitude tests in medical student selection: meta-regression of six UK longitudinal studies
Background: Measures used for medical student selection should predict future performance during training. A problem for any selection study is that predictor-outcome correlations are known only in those who have been selected, whereas selectors need to know how measures would predict in the entire pool of applicants. That problem of interpretation can be solved by calculating construct-level predictive validity, an estimate of true predictor-outcome correlation across the range of applicant abilities.
Methods: Construct-level predictive validities were calculated in six cohort studies of medical student selection and training (student entry, 1972 to 2009) for a range of predictors, including A-levels, General Certificates of Secondary Education (GCSEs)/O-levels, and aptitude tests (AH5 and UK Clinical Aptitude Test (UKCAT)). Outcomes included undergraduate basic medical science and finals assessments, as well as postgraduate measures of Membership of the Royal Colleges of Physicians of the United Kingdom (MRCP(UK)) performance and entry in the Specialist Register. Construct-level predictive validity was calculated with the method of Hunter, Schmidt and Le (2006), adapted to correct for right-censorship of examination results due to grade inflation.
Results: Meta-regression analyzed 57 separate predictor-outcome correlations (POCs) and construct-level predictive validities (CLPVs). Mean CLPVs are substantially higher (.450) than mean POCs (.171). Mean CLPVs for first-year examinations, were high for A-levels (.809; CI: .501 to .935), and lower for GCSEs/O-levels (.332; CI: .024 to .583) and UKCAT (mean = .245; CI: .207 to .276). A-levels had higher CLPVs for all undergraduate and postgraduate assessments than did GCSEs/O-levels and intellectual aptitude tests. CLPVs of educational attainment measures decline somewhat during training, but continue to predict postgraduate performance. Intellectual aptitude tests have lower CLPVs than A-levels or GCSEs/O-levels.
Conclusions: Educational attainment has strong CLPVs for undergraduate and postgraduate performance, accounting for perhaps 65% of true variance in first year performance. Such CLPVs justify the use of educational attainment measure in selection, but also raise a key theoretical question concerning the remaining 35% of variance (and measurement error, range restriction and right-censorship have been taken into account). Just as in astrophysics, ‘dark matter’ and ‘dark energy’ are posited to balance various theoretical equations, so medical student selection must also have its ‘dark variance’, whose nature is not yet properly characterized, but explains a third of the variation in performance during training. Some variance probably relates to factors which are unpredictable at selection, such as illness or other life events, but some is probably also associated with factors such as personality, motivation or study skills
The developmental effects of media-ideal internalization and self-objectification processes on adolescents’ negative body-feelings, dietary restraint, and binge eating
Despite accumulated experimental evidence of the negative effects of exposure to media-idealized images, the degree to which body image, and eating related disturbances are caused by media portrayals of gendered beauty ideals remains controversial. On the basis of the most up-to-date meta-analysis of experimental studies indicating that media-idealized images have the most harmful and substantial impact on vulnerable individuals regardless of gender (i.e., “internalizers” and “self-objectifiers”), the current longitudinal study examined the direct and mediated links posited in objectification theory among media-ideal internalization, self-objectification, shame and anxiety surrounding the body and appearance, dietary restraint, and binge eating. Data collected from 685 adolescents aged between 14 and 15 at baseline (47 % males), who were interviewed and completed standardized measures annually over a 3-year period, were analyzed using a structural equation modeling approach. Results indicated that media-ideal internalization predicted later thinking and scrutinizing of one’s body from an external observer’s standpoint (or self-objectification), which then predicted later negative emotional experiences related to one’s body and appearance. In turn, these negative emotional experiences predicted subsequent dietary restraint and binge eating, and each of these core features of eating disorders influenced each other. Differences in the strength of these associations across gender were not observed, and all indirect effects were significant. The study provides valuable information about how the cultural values embodied by gendered beauty ideals negatively influence adolescents’ feelings, thoughts and behaviors regarding their own body, and on the complex processes involved in disordered eating. Practical implications are discussed
A rocky planet transiting a nearby low-mass star
M-dwarf stars -- hydrogen-burning stars that are smaller than 60 per cent of
the size of the Sun -- are the most common class of star in our Galaxy and
outnumber Sun-like stars by a ratio of 12:1. Recent results have shown that M
dwarfs host Earth-sized planets in great numbers: the average number of M-dwarf
planets that are between 0.5 to 1.5 times the size of Earth is at least 1.4 per
star. The nearest such planets known to transit their star are 39 parsecs away,
too distant for detailed follow-up observations to measure the planetary masses
or to study their atmospheres. Here we report observations of GJ 1132b, a
planet with a size of 1.2 Earth radii that is transiting a small star 12
parsecs away. Our Doppler mass measurement of GJ 1132b yields a density
consistent with an Earth-like bulk composition, similar to the compositions of
the six known exoplanets with masses less than six times that of the Earth and
precisely measured densities. Receiving 19 times more stellar radiation than
the Earth, the planet is too hot to be habitable but is cool enough to support
a substantial atmosphere, one that has probably been considerably depleted of
hydrogen. Because the host star is nearby and only 21 per cent the radius of
the Sun, existing and upcoming telescopes will be able to observe the
composition and dynamics of the planetary atmosphere.Comment: Published in Nature on 12 November 2015, available at
http://dx.doi.org/10.1038/nature15762. This is the authors' version of the
manuscrip
Parent-of-origin-specific allelic associations among 106 genomic loci for age at menarche.
Age at menarche is a marker of timing of puberty in females. It varies widely between individuals, is a heritable trait and is associated with risks for obesity, type 2 diabetes, cardiovascular disease, breast cancer and all-cause mortality. Studies of rare human disorders of puberty and animal models point to a complex hypothalamic-pituitary-hormonal regulation, but the mechanisms that determine pubertal timing and underlie its links to disease risk remain unclear. Here, using genome-wide and custom-genotyping arrays in up to 182,416 women of European descent from 57 studies, we found robust evidence (P < 5 × 10(-8)) for 123 signals at 106 genomic loci associated with age at menarche. Many loci were associated with other pubertal traits in both sexes, and there was substantial overlap with genes implicated in body mass index and various diseases, including rare disorders of puberty. Menarche signals were enriched in imprinted regions, with three loci (DLK1-WDR25, MKRN3-MAGEL2 and KCNK9) demonstrating parent-of-origin-specific associations concordant with known parental expression patterns. Pathway analyses implicated nuclear hormone receptors, particularly retinoic acid and γ-aminobutyric acid-B2 receptor signalling, among novel mechanisms that regulate pubertal timing in humans. Our findings suggest a genetic architecture involving at least hundreds of common variants in the coordinated timing of the pubertal transition
Patient and public involvement in health literacy interventions: a mapping review
Background: Health literacy is a critical mediating factor that impacts on the health of older adults. Patient and public involvement in health and social care research, policy and design of care delivery is one mechanism that can promote production of better health literacy. This mapping review looks for and describes practices, concepts and methods that have been reported involving patients, public and (non-researcher) professionals in the development and design of health literacy interventions for older people. Methods: Studies that aimed to improve health literacy were identified within a previously created compatible inventory of health behaviour studies for older people. Articles were screened for whether they addressed health literacy and featured involvement of stakeholders other than investigators and patients. Two reviewers independently read each study to identify any patient, public and professional involvement in the research process. We also noted some aspects of outcomes. Results: Twenty-two studies included patient, public and/or professional involvement in at least one research domain: design, management or evaluation. Involvement included volunteers, older people, professionals, patients, and community representatives. All studies were driven by an organisational or biomedical agenda. Conclusions: Patient, public and professional involvement wasrarely reported in studies on health literacy interventions for older people. This could help explain why some interventions fail to improve health literacy in older people. Key words – health literacy intervention research, older people, patient and public involvement, mapping revie
Poly(Glycerol Adipate-co-ω-Pentadecalactone) Spray-Dried Microparticles as Sustained Release Carriers for Pulmonary Delivery
Purpose The aim of this work was to optimize biodegradable polyester poly(glycerol adipate-co-ω-pentadecalactone), PGA-co-PDL, microparticles as sustained release (SR) carriers for pulmonary drug delivery. Methods Microparticles were produced by spray drying directly from double emulsion with and without dispersibility enhancers ( L -arginine and L -leucine) (0.5–1.5%w/w) using sodium fluorescein (SF) as a model hydrophilic drug. Results Spray-dried microparticles without dispersibility enhancers exhibited aggregated powders leading to low fine particle fraction (%FPF) (28.79 ± 3.24), fine particle dose (FPD) (14.42 ± 1.57 μg), with a mass median aerodynamic diameter (MMAD) 2.86 ± 0.24 μm. However, L -leucine was significantly superior in enhancing the aerosolization performance ( L- arginine:%FPF 27.61 ± 4.49–26.57 ± 1.85; FPD 12.40 ± 0.99–19.54 ± 0.16 μg and MMAD 2.18 ± 0.35–2.98 ± 0.25 μm, L -leucine:%FPF 36.90 ± 3.6–43.38 ± 5.6; FPD 18.66 ± 2.90–21.58 ± 2.46 μg and MMAD 2.55 ± 0.03–3.68 ± 0.12 μm). Incorporating L -leucine (1.5%w/w) reduced the burst release (24.04 ± 3.87%) of SF compared to unmodified formulations (41.87 ± 2.46%), with both undergoing a square root of time (Higuchi’s pattern) dependent release. Comparing the toxicity profiles of PGA-co-PDL with L -leucine (1.5%w/w) (5 mg/ml) and poly(lactide-co-glycolide), (5 mg/ml) spray-dried microparticles in human bronchial epithelial 16HBE14o- cell lines, resulted in cell viability of 85.57 ± 5.44 and 60.66 ± 6.75%, respectively, after 72 h treatment. Conclusion The above data suggest that PGA-co-PDL may be a useful polymer for preparing SR microparticle carriers, together with dispersibility enhancers, for pulmonary delivery
- …
