1,291 research outputs found

    MLK Day and Racial Attitudes: Liking the Group More but Its Members Less

    Get PDF
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/113780/1/pops12171.pd

    Concepts of GPCR-controlled navigation in the immune system

    No full text
    G-protein-coupled receptor (GPCR) signaling is essential for the spatiotemporal control of leukocyte dynamics during immune responses. For efficient navigation through mammalian tissues, most leukocyte types express more than one GPCR on their surface and sense a wide range of chemokines and chemoattractants, leading to basic forms of leukocyte movement (chemokinesis, haptokinesis, chemotaxis, haptotaxis, and chemorepulsion). How leukocytes integrate multiple GPCR signals and make directional decisions in lymphoid and inflamed tissues is still subject of intense research. Many of our concepts on GPCR-controlled leukocyte navigation in the presence of multiple GPCR signals derive from in vitro chemotaxis studies and lower vertebrates. In this review, we refer to these concepts and critically contemplate their relevance for the directional movement of several leukocyte subsets (neutrophils, T cells, and dendritic cells) in the complexity of mouse tissues. We discuss how leukocyte navigation can be regulated at the level of only a single GPCR (surface expression, competitive antagonism, oligomerization, homologous desensitization, and receptor internalization) or multiple GPCRs (synergy, hierarchical and non-hierarchical competition, sequential signaling, heterologous desensitization, and agonist scavenging). In particular, we will highlight recent advances in understanding GPCR-controlled leukocyte navigation by intravital microscopy of immune cells in mice

    Too much experience: A desensitization bias in emotional perspective taking

    Get PDF
    People often use their own feelings as a basis to predict others' feelings. For example, when trying to gauge how much someone else enjoys a television show, people might think "How much do I enjoy it?" and use this answer as basis for estimating others' reactions. Although personal experience (such as actually watching the show oneself) often improves empathic accuracy, we found that gaining too much experience can impair it. Five experiments highlight a desensitization bias in emotional perspective taking, with consequences for social prediction, social judgment, and social behavior. Participants who viewed thrilling or shocking images many times predicted first-time viewers would react less intensely (Experiments 1 and 2); participants who heard the same funny joke or annoying noise many times estimated less intense reactions of first-time listeners (Experiments 3 and 4); and further, participants were less likely to actually share good jokes and felt less bad about blasting others with annoying noise after they themselves became desensitized to those events (Experiments 3-5). These effects were mediated by participants' own attenuated reactions. Moreover, observers failed to anticipate this bias, believing that overexposed participants (i.e., repeatedly exposed participants who became desensitized) would make better decisions on their behalf (Experiment 5). Taken together, these findings reveal a novel paradox in emotional perspective taking: If people experience an evocative event many times, they may not become wiser companions but worse, unable to disentangle self-change from other-oriented thinking. Just as lacking exposure to others' experiences can create gaps in empathy and understanding, so may gaining too much

    Three-dimensional distribution of ejecta in Supernova 1987A at 10 000 days

    Get PDF
    Due to its proximity, SN 1987A offers a unique opportunity to directly observe the geometry of a stellar explosion as it unfolds. Here we present spectral and imaging observations of SN 1987A obtained ~10,000 days after the explosion with HST/STIS and VLT/SINFONI at optical and near-infrared wavelengths. These observations allow us to produce the most detailed 3D map of H-alpha to date, the first 3D maps for [Ca II] \lambda \lambda 7292, 7324, [O I] \lambda \lambda 6300, 6364 and Mg II \lambda \lambda 9218, 9244, as well as new maps for [Si I]+[Fe II] 1.644 \mu m and He I 2.058 \mu m. A comparison with previous observations shows that the [Si I]+[Fe II] flux and morphology have not changed significantly during the past ten years, providing evidence that it is powered by 44Ti. The time-evolution of H-alpha shows that it is predominantly powered by X-rays from the ring, in agreement with previous findings. All lines that have sufficient signal show a similar large-scale 3D structure, with a north-south asymmetry that resembles a broken dipole. This structure correlates with early observations of asymmetries, showing that there is a global asymmetry that extends from the inner core to the outer envelope. On smaller scales, the two brightest lines, H-alpha and [Si I]+[Fe II] 1.644 \mu m, show substructures at the level of ~ 200 - 1000 km/s and clear differences in their 3D geometries. We discuss these results in the context of explosion models and the properties of dust in the ejecta.Comment: Accepted for publication in Ap

    Nova light curves from the Solar Mass Ejection Imager (SMEI) - II. The extended catalogue

    Get PDF
    We present the results from observing nine Galactic novae in eruption with the Solar Mass Ejection Imager (SMEI) between 2004 and 2009. While many of these novae reached peak magnitudes that were either at or approaching the detection limits of SMEI, we were still able to produce light curves that in many cases contained more data at and around the initial rise, peak, and decline than those found in other variable star catalogs. For each nova, we obtained a peak time, maximum magnitude, and for several an estimate of the decline time (t2). Interestingly, although of lower quality than those found in Hounsell et al. (2010a), two of the light curves may indicate the presence of a pre-maximum halt. In addition the high cadence of the SMEI instrument has allowed the detection of low amplitude variations in at least one of the nova light curves

    Update on the German and Australasian Optical Ground Station Networks

    Full text link
    Networks of ground stations designed to transmit and receive at optical wavelengths through the atmosphere offer an opportunity to provide on-demand, high-bandwidth, secure communications with spacecraft in Earth orbit and beyond. This work describes the operation and activities of current Free Space Optical Communication (FSOC) ground stations in Germany and Australasia. In Germany, FSOC facilities are located at the Oberpfaffenhofen campus of the Deutsches Zentrum fur Luft- und Raumfahrt (German Aerospace Center, DLR), the Laser-Bodenstation in Trauen (Responsive Space Cluster Competence Center, DLR), and the Research Center Space of the University of the Bundeswehr Munich in Neubiberg. The DLR also operates a ground station in Almeria, Spain as part of the European Optical Nucleus Network. The Australasian Optical Ground Station Network (AOGSN) is a proposed network of 0.5 -- 0.7m class optical telescopes located across Australia and New Zealand. The development and progress for each node of the AOGSN is reported, along with optimisation of future site locations based on cloud cover analysis.Comment: 17 pages, 12 Figures, Submitted to International Journal of Satellite Communications and Networking, Special Issue on Optical Space Communication

    Investment in online self-evaluation tests: A theoretical approach

    Get PDF
    BACKGROUND: Large-scale traumatic events may burden any affected public health system with consequential charges. One major post-disaster, expense factor emerges form early psychological interventions and subsequent, posttraumatic mental health care. Due to the constant increase in mental health care costs, also post-disaster public mental health requires best possible, cost-effective care systems. Screening and monitoring the affected population might be one such area to optimize the charges. METHODS: This paper analyzes the potential cost-effectiveness of monitoring a psychologically traumatized population and to motivate individuals at risk to seek early treatment. As basis for our model served Grossman's health production function, which was modified according to fundamental concepts of cost-benefit analyzes, to match the basic conditions of online monitoring strategies. We then introduce some fundamental concepts of cost-benefit analysis. RESULTS: When performing cost-benefit analyses, policy makers have to consider both direct costs (caused by treatment) and indirect costs (due to non-productivity). Considering both costs sources we find that the use of Internet-based psychometric screening instruments may reduce the duration of future treatment, psychological burden and treatment costs. CONCLUSION: The identification of individuals at risk for PTSD following a disaster may help organizations prevent both the human and the economic costs of this disease. Consequently future research on mental health issues should put more emphasis on the importance of monitoring to detect early PTSD and focus the most effective resources within early treatment and morbidity prevention

    Atomistic spin model simulations of magnetic nanomaterials

    Get PDF
    Atomistic modelling of magnetic materials provides unprecedented detail about the underlying physical processes that govern their macroscopic properties, and allows the simulation of complex effects such as surface anisotropy, ultrafast laser-induced spin dynamics, exchange bias, and microstructural effects. Here we present the key methods used in atomistic spin models which are then applied to a range of magnetic problems. We detail the parallelization strategies used which enable the routine simulation of extended systems with full atomistic resolution
    corecore