145 research outputs found
IFNβ Protects Neurons from Damage in a Murine Model of HIV-1 Associated Brain Injury.
Infection with human immunodeficiency virus-1 (HIV-1) causes brain injury. Type I interferons (IFNα/β) are critical mediators of any anti-viral immune response and IFNβ has been implicated in the temporary control of lentiviral infection in the brain. Here we show that transgenic mice expressing HIV-1 envelope glycoprotein 120 in their central nervous system (HIVgp120tg) mount a transient IFNβ response and provide evidence that IFNβ confers neuronal protection against HIVgp120 toxicity. In cerebrocortical cell cultures, neuroprotection by IFNβ against gp120 toxicity is dependent on IFNα receptor 1 (IFNAR1) and the β-chemokine CCL4, as IFNAR1 deficiency and neutralizing antibodies against CCL4, respectively, abolish the neuroprotective effects. We find in vivo that IFNβ mRNA is significantly increased in HIVgp120tg brains at 1.5, but not 3 or 6 months of age. However, a four-week intranasal IFNβ treatment of HIVgp120tg mice starting at 3.5 months of age increases expression of CCL4 and concomitantly protects neuronal dendrites and pre-synaptic terminals in cortex and hippocampus from gp120-induced damage. Moreover, in vivo and in vitro data suggests astrocytes are a major source of IFNβ-induced CCL4. Altogether, our results suggest exogenous IFNβ as a neuroprotective factor that has potential to ameliorate in vivo HIVgp120-induced brain injury
HIF-Independent Regulation of Thioredoxin Reductase 1 Contributes to the High Levels of Reactive Oxygen Species Induced by Hypoxia
Cellular adaptation to hypoxic conditions mainly involves transcriptional changes in which hypoxia inducible factors (HIFs) play a critical role. Under hypoxic conditions, HIF protein is stabilized due to inhibition of the activity of prolyl hydroxylases (EGLNs). Because the reaction carried out by these enzymes uses oxygen as a co-substrate it is generally accepted that the hypoxic inhibition of EGLNs is due to the reduction in oxygen levels. However, several studies have reported that hypoxic generation of mitochondrial reactive oxygen species (ROS) is required for HIF stabilization. Here, we show that hypoxia downregulates thioredoxin reductase 1 (TR1) mRNA and protein levels. This hypoxic TR1 regulation is HIF independent, as HIF stabilization by EGLNs inhibitors does not affect TR1 expression and HIF deficiency does not block TR1 hypoxic-regulation, and it has an effect on TR1 function, as hypoxic conditions also reduce TR1 activity. We found that, when cultured under hypoxic conditions, TR1 deficient cells showed a larger accumulation of ROS compared to control cells, whereas TR1 over-expression was able to block the hypoxic generation of ROS. Furthermore, the changes in ROS levels observed in TR1 deficient or TR1 over-expressing cells did not affect HIF stabilization or function. These results indicate that hypoxic TR1 down-regulation is important in maintaining high levels of ROS under hypoxic conditions and that HIF stabilization and activity do not require hypoxic generation of ROS
Brugia malayi Antigen (BmA) inhibits HIV-1 trans-infection but neither BmA nor ES-62 alter HIV-1 infectivity of DC induced CD4+ Th-cells
One of the hallmarks of HIV-1 disease is the association of heightened CD4+ T-cell activation with HIV-1 replication. Parasitic helminths including filarial nematodes have evolved numerous and complex mechanisms to skew, dampen and evade human immune responses suggesting that HIV-1 infection may be modulated in co-infected individuals. Here we studied the effects of two filarial nematode products, adult worm antigen from Brugia malayi (BmA) and excretory-secretory product 62 (ES-62) from Acanthocheilonema viteae on HIV-1 infection in vitro. Neither BmA nor ES-62 influenced HIV-1 replication in CD4+ enriched T-cells, with either a CCR5- or CXCR4-using virus. BmA, but not ES-62, had the capacity to bind the C-type lectin dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) thereby inhibiting HIV-1 trans-infection of CD4+ enriched T-cells. As for their effect on DCs, neither BmA nor ES-62 could enhance or inhibit DC maturation as determined by CD83, CD86 and HLA-DR expression, or the production of IL-6, IL-10, IL-12 and TNF-α. As expected, due to the unaltered DC phenotype, no differences were found in CD4+ T helper (Th) cell phenotypes induced by DCs treated with either BmA or ES-62. Moreover, the HIV-1 susceptibility of the Th-cell populations induced by BmA or ES-62 exposed DCs was unaffected for both CCR5- and CXCR4-using HIV-1 viruses. In conclusion, although BmA has the potential capacity to interfere with HIV-1 transmission or initial viral dissemination through preventing the virus from interacting with DCs, no differences in the Th-cell polarizing capacity of DCs exposed to BmA or ES-62 were observed. Neither antigenic source demonstrated beneficial or detrimental effects on the HIV-1 susceptibility of CD4+ Th-cells induced by exposed DCs
Downregulation of MIP-1α/CCL3 with praziquantel treatment in Schistosoma haematobium and HIV-1 co-infected individuals in a rural community in Zimbabwe
The results of our study show that the MIP-1alpha/CCL3 levels were positively associated with S. haematobium egg counts at baseline but not with HIV-1 infection status. MIP-1alpha/CCL3 levels were significantly reduced at three months post treatment with praziquantel. We therefore conclude that MIP-1alpha/CCL3 is produced during infection with S haematobium. S. haematobium infection is associated with increased MIP-1alpha/CCL3 levels in an egg intensity-dependent manner and treatment of S. haematobium is associated with a reduction in MIP-1alpha/CCL3
Release of oxidizing fluids in subduction zones recorded by iron isotope zonation in garnet
Subduction zones are key regions of chemical and mass transfer between the Earth’s surface and mantle. During subduction, oxidized material is carried into the mantle and large amounts of water are released due to the breakdown of hydrous minerals such as lawsonite. Dehydration accompanied by the release of oxidizing species may play a key role in controlling redox changes in the subducting slab and overlying mantle wedge. Here we present measurements of oxygen fugacity, using garnet–epidote oxybarometry, together with analyses of the stable iron isotope composition of zoned garnets from Sifnos, Greece. We find that the garnet interiors grew under relatively oxidized conditions whereas garnet rims record more reduced conditions. Garnet δ56Fe increases from core to rim as the system becomes more reduced. Thermodynamic analysis shows that this change from relatively oxidized to more reduced conditions occurred during lawsonite dehydration. We conclude that the garnets maintain a record of progressive dehydration and that the residual mineral assemblages within the slab became more reduced during progressive subduction-zone dehydration. This is consistent with the hypothesis that lawsonite dehydration accompanied by the release of oxidizing species, such as sulfate, plays an important and measurable role in the global redox budget and contributes to sub-arc mantle oxidation in subduction zones
Comparative Proteomic Analysis of Serum from Patients with Systemic Sclerosis and Sclerodermatous GVHD. Evidence of Defective Function of Factor H
BACKGROUND: Systemic sclerosis (SSc) is an autoimmune disease characterized by immunological and vascular abnormalities. Until now, the cause of SSc remains unclear. Sclerodermatous graft-versus-host disease (ScGVHD) is one of the most severe complications following bone marrow transplantation (BMT) for haematological disorders. Since the first cases, the similarity of ScGVHD to SSc has been reported. However, both diseases could have different etiopathogeneses. The objective of this study was to identify new serum biomarkers involved in SSc and ScGVHD. METHODOLOGY: Serum was obtained from patients with SSc and ScGVHD, patients without ScGVHD who received BMT for haematological disorders and healthy controls. Bi-dimensional electrophoresis (2D) was carried out to generate maps of serum proteins from patients and controls. The 2D maps underwent image analysis and differently expressed proteins were identified. Immuno-blot analysis and ELISA assay were used to validate the proteomic data. Hemolytic assay with sheep erythrocytes was performed to evaluate the capacity of Factor H (FH) to control complement activation on the cellular surface. FH binding to endothelial cells (ECs) was also analysed in order to assess possible dysfunctions of this protein. PRINCIPAL FINDINGS: Fourteen differentially expressed proteins were identified. We detected pneumococcal antibody cross-reacting with double stranded DNA in serum of all bone marrow transplanted patients with ScGVHD. We documented higher levels of FH in serum of SSc and ScGVHD patients compared healthy controls and increased sheep erythrocytes lysis after incubation with serum of diffuse SSc patients. In addition, we observed that FH binding to ECs was reduced when we used serum from these patients. CONCLUSIONS: The comparative proteomic analysis of serum from SSc and ScGVHD patients highlighted proteins involved in either promoting or maintaining an inflammatory state. We also found a defective function of Factor H, possibly associated with ECs damage
Safety and efficacy of thrombectomy in patients undergoing primary percutaneous coronary intervention for Acute ST elevation MI: A Meta-Analysis of Randomized Controlled Trials
Clinical trials comparing thrombectomy devices with conventional percutaneous coronary interventions (PCI) in patients with acute ST elevation myocardial infarction (STEMI) have produced conflicting results. The objective of our study was to systematically evaluate currently available data comparing thrombectomy followed by PCI with conventional PCI alone in patients with acute STEMI
- …