73 research outputs found

    Migratory behaviour and survival rates of wild northern Atlantic salmon (Salmo salar) post-smolts: effects of environmental factors

    Get PDF
    This is the accepted version (authors' final draft post review) of the paper, reprinted with permission. Published version available at http://dx.doi.org/10.1111/j.1095-8649.2009.02423.xTo study smolt behaviour and survival of a northern Atlantic salmon (Salmo salar) population during river descent, sea entry and fjord migration, 120 wild S. salar were tagged with acoustic tags and registered at four automatic listening station arrays in the mouth of the North Norwegian River Alta and throughout the Alta Fjord. An estimated 75% of the post-smolts survived from the river mouth, through the estuary and the first 17 km of the fjord. Survival rates in the fjord varied with body length, and ranged from 97.0–99.5% per km. On average, the post-smolts spent 1.5 days (36 h, range 11–365 h) travelling from the river mouth to the last fjord array, 31 km from the river mouth. The migratory speed was slower (1.8 bl sec-135 ) in the first 4 km after sea entry compared to the next 27 km (3.0 bl sec-136 ). Post-smolts entered the fjord more often during the high or ebbing tide (70%). There was no clear diurnal migration pattern within the river and fjord, but most of the post-smolts entered the fjord at night (66%, 2000–0800 hours), despite the 24 h daylight at this latitude. The tidal cycle, wind-induced currents and the smolts‟ own movements seemed to influence migratory speeds and routes in different parts of the fjord. A large variation in migration patterns, both in river and fjord, might indicate that individuals in stochastic estuarine and marine environments are exposed to highly variable selection regimes resulting in different responses to environmental factors on both temporal and spatial scales. Post-smolts in northern Alta Fjord had similar early marine survival rates to those observed previously in southern fjords; however fjord residency in the north was shorter

    Quantifying the Ocean, Freshwater and Human Effects on Year-to-Year Variability of One-Sea-Winter Atlantic Salmon Angled in Multiple Norwegian Rivers

    Get PDF
    Many Atlantic salmon, Salmo salar, populations are decreasing throughout the species' distributional range probably due to several factors acting in concert. A number of studies have documented the influence of freshwater and ocean conditions, climate variability and human impacts resulting from impoundment and aquaculture. However, most previous research has focused on analyzing single or only a few populations, and quantified isolated effects rather than handling multiple factors in conjunction. By using a multi-river mixed-effects model we estimated the effects of oceanic and river conditions, as well as human impacts, on year-to-year and between-river variability across 60 time series of recreational catch of one-sea-winter salmon (grilse) from Norwegian rivers over 29 years (1979–2007). Warm coastal temperatures at the time of smolt entrance into the sea and increased water discharge during upstream migration of mature fish were associated with higher rod catches of grilse. When hydropower stations were present in the course of the river systems the strength of the relationship with runoff was reduced. Catches of grilse in the river increased significantly following the reduction of the harvesting of this life-stage at sea. However, an average decreasing temporal trend was still detected and appeared to be stronger in the presence of salmon farms on the migration route of smolts in coastal/fjord areas. These results suggest that both ocean and freshwater conditions in conjunction with various human impacts contribute to shape interannual fluctuations and between-river variability of wild Atlantic salmon in Norwegian rivers. Current global change altering coastal temperature and water flow patterns might have implications for future grilse catches, moreover, positioning of aquaculture facilities as well as the implementation of hydropower schemes or other encroachments should be made with care when implementing management actions and searching for solutions to conserve this species

    A Synthesis of Tagging Studies Examining the Behaviour and Survival of Anadromous Salmonids in Marine Environments

    Get PDF
    This paper synthesizes tagging studies to highlight the current state of knowledge concerning the behaviour and survival of anadromous salmonids in the marine environment. Scientific literature was reviewed to quantify the number and type of studies that have investigated behaviour and survival of anadromous forms of Pacific salmon (Oncorhynchus spp.), Atlantic salmon (Salmo salar), brown trout (Salmo trutta), steelhead (Oncorhynchus mykiss), and cutthroat trout (Oncorhynchus clarkii). We examined three categories of tags including electronic (e.g. acoustic, radio, archival), passive (e.g. external marks, Carlin, coded wire, passive integrated transponder [PIT]), and biological (e.g. otolith, genetic, scale, parasites). Based on 207 papers, survival rates and behaviour in marine environments were found to be extremely variable spatially and temporally, with some of the most influential factors being temperature, population, physiological state, and fish size. Salmonids at all life stages were consistently found to swim at an average speed of approximately one body length per second, which likely corresponds with the speed at which transport costs are minimal. We found that there is relatively little research conducted on open-ocean migrating salmonids, and some species (e.g. masu [O. masou] and amago [O. rhodurus]) are underrepresented in the literature. The most common forms of tagging used across life stages were various forms of external tags, coded wire tags, and acoustic tags, however, the majority of studies did not measure tagging/handling effects on the fish, tag loss/failure, or tag detection probabilities when estimating survival. Through the interdisciplinary application of existing and novel technologies, future research examining the behaviour and survival of anadromous salmonids could incorporate important drivers such as oceanography, tagging/handling effects, predation, and physiology

    Proxy Measures of Fitness Suggest Coastal Fish Farms Can Act as Population Sources and Not Ecological Traps for Wild Gadoid Fish

    Get PDF
    Background: Ecological traps form when artificial structures are added to natural habitats and induce mismatches between habitat preferences and fitness consequences. Their existence in terrestrial systems has been documented, yet little evidence suggests they occur in marine environments. Coastal fish farms are widespread artificial structures in coastal ecosystems and are highly attractive to wild fish. Methodology/Principal Findings: To investigate if coastal salmon farms act as ecological traps for wild Atlantic cod (Gadus morhua) and saithe (Pollachius virens), we compared proxy measures of fitness between farm-associated fish and control fish caught distant from farms in nine locations throughout coastal Norway, the largest coastal fish farming industry in the world. Farms modified wild fish diets in both quality and quantity, thereby providing farm-associated wild fish with a strong trophic subsidy. This translated to greater somatic (saithe: 1.06–1.12 times; cod: 1.06–1.11 times) and liver condition indices (saithe: 1.4–1.8 times; cod: 2.0–2.8 times) than control fish caught distant from farms. Parasite loads of farm-associated wild fish were modified from control fish, with increased external and decreased internal parasites, however the strong effect of the trophic subsidy overrode any effects of altered loads upon condition. Conclusions and Significance: Proxy measures of fitness provided no evidence that salmon farms function as ecological traps for wild fish. We suggest fish farms may act as population sources for wild fish, provided they are protected from fishing while resident at farms to allow their increased condition to manifest as greater reproductive output.Funding was provided by the Norwegian Research Council Havet og kysten program to the CoastACE project (no: 173384)

    Ten practical realities for institutional animal care and use committees when evaluating protocols dealing with fish in the field

    Get PDF
    Institutional Animal Care and Use Committee’s (IACUCs) serve an important role in ensuring that ethical practices are used by researchers working with vertebrate taxa including fish. With a growing number of researchers working on fish in the field and expanding mandates of IACUCs to regulate field work, there is potential for interactions between aquatic biologists and IACUCs to result in unexpected challenges and misunderstandings. Here we raise a number of issues often encountered by researchers and suggest that they should be taken into consideration by IACUCs when dealing with projects that entail the examination of fish in their natural environment or other field settings. We present these perspectives as ten practical realities along with their implications for establishing IACUC protocols. The ten realities are: (1) fish are diverse; (2) scientific collection permit regulations may conflict with IACUC policies; (3) stakeholder credibility and engagement may constrain what is possible; (4) more (sample size) is sometimes better; (5) anesthesia is not always needed or possible; (6) drugs such as analgesics and antibiotics should be prescribed with care; (7) field work is inherently dynamic; (8) wild fish are wild; (9) individuals are different, and (10) fish capture, handling, and retention are often constrained by logistics. These realities do not imply ignorance on the part of IACUCs, but simply different training and experiences that make it difficult for one to understand what happens outside of the lab where fish are captured and not ordered/purchased/reared, where there are engaged stakeholders, and where there is immense diversity (in size, morphology, behaviour, life-history, physiological tolerances) such that development of rigid protocols or extrapolation from one species (or life-stage, sex, size class, etc.) to another is difficult. We recognize that underlying these issues is a need for greater collaboration between IACUC members (including veterinary professionals) and field researchers which would provide more reasoned, rational and useful guidance to improve or maintain the welfare status of fishes used in field research while enabling researchers to pursue fundamental and applied questions related to the biology of fish in the field. As such, we hope that these considerations will be widely shared with the IACUCs of concerned researchers

    Short CommunicationFirst tracking of white stumpnose Rhabdosargus globiceps (Sparidae) in a South African marine protected area

    No full text
    There is a growing recreational fishery for white stumpnose Rhabdosargus globiceps (Sparidae) in Langebaan Lagoon, part of South Africa's West Coast National Park. The upper reaches of the lagoon are protected from fishing, but the extent to which the closure protects the white stumpnose population is uncertain. In a controlled aquarium experiment we found that VEMCO V8 transmitters could be implanted into white stumpnose without expulsion or any measurable effects on survival and growth. Four fish captured in the protected zone were fitted with transmitters and tracked over a 12-day period in the field. The fish moved along deep channels, occasionally penetrating the fishing zone. Net distances covered were between 9km and 15km per fish during the study period. Movement was mostly at night and at twilight.Keywords: acoustic telemetry; fish movement; Langebaan Lagoon; marine protected area; Rhabdosargus globiceps; transmitter implantsAfrican Journal of Marine Science 2007, 29(1): 147–15
    • …
    corecore