581 research outputs found

    Neutron-Electron EDM Correlations in Supersymmetry and Prospects for EDM Searches

    Full text link
    Motivated by recent progress in experimental techniques of electric dipole moment (EDM) measurements, we study correlations between the neutron and electron EDMs in common supersymmetric models. These include minimal supergravity (mSUGRA) with small CP phases, mSUGRA with a heavy SUSY spectrum, the decoupling scenario and split SUSY. In most cases, the electron and neutron EDMs are found to be observable in the next round of EDM experiments. They exhibit certain correlation patterns. For example, if d_n ~ 10^{-27} e cm is found, d_e is predicted to lie in the range 10^{-28}-10^{-29} e cm.Comment: 16 pages,12 figures. To appear in JHEP. A note on stability of the correlations added in Conclusions; refs. and footnotes adde

    Bosonic Excitations in Random Media

    Full text link
    We consider classical normal modes and non-interacting bosonic excitations in disordered systems. We emphasise generic aspects of such problems and parallels with disordered, non-interacting systems of fermions, and discuss in particular the relevance for bosonic excitations of symmetry classes known in the fermionic context. We also stress important differences between bosonic and fermionic problems. One of these follows from the fact that ground state stability of a system requires all bosonic excitation energy levels to be positive, while stability in systems of non-interacting fermions is ensured by the exclusion principle, whatever the single-particle energies. As a consequence, simple models of uncorrelated disorder are less useful for bosonic systems than for fermionic ones, and it is generally important to study the excitation spectrum in conjunction with the problem of constructing a disorder-dependent ground state: we show how a mapping to an operator with chiral symmetry provides a useful tool for doing this. A second difference involves the distinction for bosonic systems between excitations which are Goldstone modes and those which are not. In the case of Goldstone modes we review established results illustrating the fact that disorder decouples from excitations in the low frequency limit, above a critical dimension dcd_c, which in different circumstances takes the values dc=2d_c=2 and dc=0d_c=0. For bosonic excitations which are not Goldstone modes, we argue that an excitation density varying with frequency as ρ(ω)ω4\rho(\omega) \propto \omega^4 is a universal feature in systems with ground states that depend on the disorder realisation. We illustrate our conclusions with extensive analytical and some numerical calculations for a variety of models in one dimension

    Self-Averaging, Distribution of Pseudo-Critical Temperatures and Finite Size Scaling in Critical Disordered Systems

    Full text link
    The distributions P(X)P(X) of singular thermodynamic quantities in an ensemble of quenched random samples of linear size ll at the critical point TcT_c are studied by Monte Carlo in two models. Our results confirm predictions of Aharony and Harris based on Renormalization group considerations. For an Ashkin-Teller model with strong but irrelevant bond randomness we find that the relative squared width, RXR_X, of P(X)P(X) is weakly self averaging. RXlα/νR_X\sim l^{\alpha/\nu}, where α\alpha is the specific heat exponent and ν\nu is the correlation length exponent of the pure model fixed point governing the transition. For the site dilute Ising model on a cubic lattice, known to be governed by a random fixed point, we find that RXR_X tends to a universal constant independent of the amount of dilution (no self averaging). However this constant is different for canonical and grand canonical disorder. We study the distribution of the pseudo-critical temperatures Tc(i,l)T_c(i,l) of the ensemble defined as the temperatures of the maximum susceptibility of each sample. We find that its variance scales as (δTc(l))2l2/ν(\delta T_c(l))^2 \sim l^{-2/\nu} and NOT as ld.Wefindthat\sim l^{-d}. We find that R_\chiisreducedbyafactorof is reduced by a factor of \sim 70withrespectto with respect to R_\chi (T_c)bymeasuring by measuring \chiofeachsampleat of each sample at T_c(i,l).Weanalyzecorrelationsbetweenthemagnetizationatcriticality. We analyze correlations between the magnetization at criticality m_i(T_c,l)andthepseudocriticaltemperature and the pseudo-critical temperature T_c(i,l)intermsofasampleindependentfinitesizescalingfunctionofasampledependentreducedtemperature in terms of a sample independent finite size scaling function of a sample dependent reduced temperature (T-T_c(i,l))/T_c$. This function is found to be universal and to behave similarly to pure systems.Comment: 31 pages, 17 figures, submitted to Phys. Rev.

    Integrated analysis of RNA and DNA from the phase III trial CALGB 40601 identifies predictors of response to trastuzumab-based neoadjuvant chemotherapy in HER2-positive breast cancer

    Get PDF
    Purpose: Response to a complex trastuzumab-based regimen is affected by multiple features of the tumor and its microenvironment. Developing a predictive algorithm is key to optimizing HER2-targeting therapy. Experimental Design: We analyzed 137 pretreatment tumors with mRNA-seq and DNA exome sequencing from CALGB 40601, a neoadjuvant phase III trial of paclitaxel plus trastuzumab with or without lapatinib in stage II to III HER2-positive breast cancer. We adopted an Elastic Net regularized regression approach that controls for covarying features within high-dimensional data. First, we applied 517 known gene expression signatures to develop an Elastic Net model to predict pCR, which we validated on 143 samples from four independent trials. Next, we performed integrative analyses incorporating clinicopathologic information with somatic mutation status, DNA copy number alterations (CNA), and gene signatures. Results: The Elastic Net model using only gene signatures predicted pCR in the validation sets (AUC ¼ 0.76). Integrative analyses showed that models containing gene signatures, clinical features, and DNA information were better pCR predictors than models containing a single data type. Frequently selected variables from the multiplatform models included amplifications of chromosome 6p, TP53 mutation, HER2-enriched subtype, and immune signatures. Variables predicting resistance included Luminal/ERþ features. Conclusions: Models using RNA only, as well as integrated RNA and DNA models, can predict pCR with improved accuracy over clinical variables. Somatic DNA alterations (mutation, CNAs), tumor molecular subtype (HER2E, Luminal), and the microenvironment (immune cells) were independent predictors of response to trastuzumab and paclitaxel-based regimens. This highlights the complexity of predicting response in HER2-positive breast cancer

    Dynamical stability of infinite homogeneous self-gravitating systems: application of the Nyquist method

    Full text link
    We complete classical investigations concerning the dynamical stability of an infinite homogeneous gaseous medium described by the Euler-Poisson system or an infinite homogeneous stellar system described by the Vlasov-Poisson system (Jeans problem). To determine the stability of an infinite homogeneous stellar system with respect to a perturbation of wavenumber k, we apply the Nyquist method. We first consider the case of single-humped distributions and show that, for infinite homogeneous systems, the onset of instability is the same in a stellar system and in the corresponding barotropic gas, contrary to the case of inhomogeneous systems. We show that this result is true for any symmetric single-humped velocity distribution, not only for the Maxwellian. If we specialize on isothermal and polytropic distributions, analytical expressions for the growth rate, damping rate and pulsation period of the perturbation can be given. Then, we consider the Vlasov stability of symmetric and asymmetric double-humped distributions (two-stream stellar systems) and determine the stability diagrams depending on the degree of asymmetry. We compare these results with the Euler stability of two self-gravitating gaseous streams. Finally, we determine the corresponding stability diagrams in the case of plasmas and compare the results with self-gravitating systems

    Propagation of cosmic rays in the foam-like Universe

    Get PDF
    The model of a classical spacetime foam is considered, which consists of static wormholes embedded in Minkowski spacetime. We examine the propagation of particles in such a medium and demonstrate that a single thin ray undergoes a specific damping in the density of particles depending on the traversed path and the distribution of wormholes. The missing particles are scattered around the ray. Wormholes was shown to form DM halos around point-like sources. Therefore, the correlation predicted between the damping and the amount of DM can be used to verify the topological nature of Dark Matter

    Single Spin Asymmetry ANA_N in Polarized Proton-Proton Elastic Scattering at s=200\sqrt{s}=200 GeV

    Get PDF
    We report a high precision measurement of the transverse single spin asymmetry ANA_N at the center of mass energy s=200\sqrt{s}=200 GeV in elastic proton-proton scattering by the STAR experiment at RHIC. The ANA_N was measured in the four-momentum transfer squared tt range 0.003t0.0350.003 \leqslant |t| \leqslant 0.035 \GeVcSq, the region of a significant interference between the electromagnetic and hadronic scattering amplitudes. The measured values of ANA_N and its tt-dependence are consistent with a vanishing hadronic spin-flip amplitude, thus providing strong constraints on the ratio of the single spin-flip to the non-flip amplitudes. Since the hadronic amplitude is dominated by the Pomeron amplitude at this s\sqrt{s}, we conclude that this measurement addresses the question about the presence of a hadronic spin flip due to the Pomeron exchange in polarized proton-proton elastic scattering.Comment: 12 pages, 6 figure

    Longitudinal double-spin asymmetry and cross section for inclusive neutral pion production at midrapidity in polarized proton collisions at sqrt(s) = 200 GeV

    Get PDF
    We report a measurement of the longitudinal double-spin asymmetry A_LL and the differential cross section for inclusive Pi0 production at midrapidity in polarized proton collisions at sqrt(s) = 200 GeV. The cross section was measured over a transverse momentum range of 1 < p_T < 17 GeV/c and found to be in good agreement with a next-to-leading order perturbative QCD calculation. The longitudinal double-spin asymmetry was measured in the range of 3.7 < p_T < 11 GeV/c and excludes a maximal positive gluon polarization in the proton. The mean transverse momentum fraction of Pi0's in their parent jets was found to be around 0.7 for electromagnetically triggered events.Comment: 6 pages, 3 figures, submitted to Phys. Rev. D (RC

    Partonic flow and ϕ\phi-meson production in Au+Au collisions at sNN\sqrt{s_{NN}} = 200 GeV

    Get PDF
    We present first measurements of the ϕ\phi-meson elliptic flow (v2(pT)v_{2}(p_{T})) and high statistics pTp_{T} distributions for different centralities from sNN\sqrt{s_{NN}} = 200 GeV Au+Au collisions at RHIC. In minimum bias collisions the v2v_{2} of the ϕ\phi meson is consistent with the trend observed for mesons. The ratio of the yields of the Ω\Omega to those of the ϕ\phi as a function of transverse momentum is consistent with a model based on the recombination of thermal ss quarks up to pT4p_{T}\sim 4 GeV/cc, but disagrees at higher momenta. The nuclear modification factor (RCPR_{CP}) of ϕ\phi follows the trend observed in the KS0K^{0}_{S} mesons rather than in Λ\Lambda baryons, supporting baryon-meson scaling. Since ϕ\phi-mesons are made via coalescence of seemingly thermalized ss quarks in central Au+Au collisions, the observations imply hot and dense matter with partonic collectivity has been formed at RHIC.Comment: 6 pages, 4 figures, submit to PR
    corecore