Springer Series in Chemical Physics

Editors: Vitalii I. Goldanskii Fritz P. Schäfer J. Peter Toennies

Managing Editor: H.K.V. Lotsch

Volume 40	High-Resolution Spectroscopy of Transient Molecules By E. Hirota
Volume 41	High Resolution Spectral Atlas of Nitrogen Dioxide 559–597 nm By K. Uehara and H. Sasada
Volume 42	Antennas and Reaction Centers of Photosynthetic Bacteria Structure, Interactions, and Dynamics Editor: M.E. Michel-Beyerle
Volume 43	The Atom-Atom Potential Method. Applications to Organic Molecular Solids By A.J. Pertsin and A.I. Kitaigorodsky
Volume 44	Secondary Ion Mass Spectrometry SIMS V Editors: A. Benninghoven, R.J. Colton, D.S. Simons, and H.W. Werner
Volume 45	Thermotropic Liquid Crystals, Fundamentals By G. Vertogen and W.H. de Jeu
Volume 46	Ultrafast Phenomena V Editors: G.R. Fleming and A.E. Siegman
Volume 47	Complex Chemical Reaction Systems Mathematical Modelling and Simulation Editors: J. Warnatz and W. Jäger
Volume 48	Ultrafast Phenomena VI Editors: T. Yajima, K. Yoshihara, C.B. Harris, and S. Shionoya
Volume 49	Vibronic Interactions in Molecules and Crystals By I.B. Bersuker and V.Z. Polinger
Volume 50	Molecular and Laser Spectroscopy By Zu-Geng Wang and Hui-Rong Xia
Volume 51	Space-Time Organization in Macromolecular Fluids

- Editors: F. Tanaka, M. Doi, and T. Ohta
- Volume 52 **Multiple-Photon Laser Chemistry** By R. V. Ambartzumian, C. D. Cantrell, and A. Puretzky
- Volume 53 Ultrafast Phenomena VII Editors: C. B. Harris, E. P. Ippen, G. A. Mourou, and A. H. Zewail

Volumes 1-39 are listed on the back inside cover

۱

Ultrafast Phenomena VII

Proceedings of the 7th International Conference, Monterey, CA, May 14–17, 1990

Editors: C.B. Harris, E.P. Ippen, G.A. Mourou, and A.H. Zewail

With 435 Figures

Springer-Verlag Berlin Heidelberg New York London Paris Tokyo Hong Kong Barcelona Professor Charles B. Harris, Ph.D. Department of Chemistry, University of California, Berkeley, CA 94720, USA

Professor Erich P. Ippen, Ph.D. Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

Professor Gerard A. Mourou, Ph.D. Electrical Engineering and Computer Science Department, University of Michigan, Ann Arbor, MI 48109, USA

Professor Ahmed H. Zewail, Ph.D. Department of Chemistry, California Institute of Technology, Pasadena, CA 91125, USA

Series Editors

Professor Dr. Fritz Peter Schäfer Max-Planck-Institut für Biophysikalische Chemie D-3400 Göttingen-Nikolausberg, FRG

Professor Vitalii I. Goldanskii

Institute of Chemical Physics Academy of Sciences, Kosygin Street 4 Moscow, 117334, USSR Professor Dr. J. Peter Toennies Max-Planck-Institut für Strömungsforschung Böttingerstrasse 6–8, D-3400 Göttingen, FRG

Managing Editor: Dr. Helmut K. V. Lotsch Springer-Verlag, Tiergartenstrasse 17, D-6900 Heidelberg, Fed.Rep.of Germany

ISBN 3-540-53049-5 Springer-Verlag Berlin Heidelberg New York ISBN 0-387-53049-5 Springer-Verlag New York Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in other ways, and storage in data banks. Duplication of this publication or parts thereof is only permitted under the provisions of the German Copyright Law of September 9, 1965, in its current version, and a copyright fee must always be paid. Violations fall under the prosecution act of the German Copyright Law.

© Springer-Verlag Berlin Heidelberg 1990 Printed in Germany

The use of registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

Printing: Weihert-Druck GmbH, D-6100 Darmstadt Binding: J. Schäffer GmbH & Co. KG, D-6718 Grünstadt 2154/3140-543210 – Printed on acid-free paper

Contents

Part I Ultrashort Pulse Generation

Hybrid and Passive Mode Locking in Coupled-Cavity Lasers By W. Sibbett (With 8 Figures)	2
Generation of Ultrashort Nd:YLF Pulses by cw Passive Mode Locking with a Nonlinear External Cavity By J.K. Chee, M.N. Kong, E.C. Cheung, and J.M. Liu (With 3 Figures)	8
Ultrashort Pulse Generation with Additive Pulse Modelocking in Solid State Lasers: Ti:Al ₂ O ₃ , Diode Pumped Nd:YAG and Nd:YLF By J. Goodberlet, J. Jacobson, J. Wang, J.G. Fujimoto, T.Y. Fan, and P.A. Schulz (With 2 Figures)	11
Chirp in Actively Modelocked Diode Lasers By A.S. Hou, R.S. Tucker, and E.P. Ippen (With 3 Figures)	14
Femtosecond Color Center Lasers near $2.8 \mu\text{m}$ with HgCdTe Multiple Quantum Well Saturable Absorber By C.L. Cesar, M.N. Islam, C.E. Soccolich, R.D. Feldman, R.F. Austin, and K.R. German (With 3 Figures)	17
820nm Colliding-Pulse Modelocked Dye Laser By W.H. Knox and F.A. Beisser (With 3 Figures)	20
Clean Subpicosecond Pulses by Coupling Resonantly to a Linear High Loss Cavity By P. Beaud, J.Q. Bi, J. Schütz, W. Hodel, and H.P. Weber (With 2 Figures)	23
Multireflection Effects in Gain-Switched and Q-Switched Semiconductor Lasers By B.J. Thedrez and C.H. Lee (With 2 Figures)	26
Dramatic Reduction of the Amplitude Noise of Colliding-Pulse-Modelocking Dye Lasers By M.C. Nuss, U. Keller, G.T. Harvey, M.S. Heutmaker, and P.R. Smith (With 2 Figures)	29

VII

Kilohertz Amplification of Femtosecond Pulses near 1.55 μ m, to Microjoule Energies By G. Sucha, M. Wegener, S. Weiss, and D.S. Chemla	
(With 3 Figures)	32
A Broadly Tunable cw Femtosecond Source for Ultrafast Spectroscopy By E.S. Wachman, D.C. Edelstein, W.S. Pelouch, and C.L. Tang (With 2 Figures)	35
Passive Feedback for Stable Short Pulse Generation By A. Agnesi, JC. Diels, P. Di Trapani, V. Kubecek, J. Marek, G. Reali, and C.Y. Yeh (With 5 Figures)	38
A New Method of Ultrashort Pulse Generation: Modified Fabry-Perot Electrooptic Modulator By T. Kobayashi, A. Morimoto, Bong Young Lee, and T. Sueta (With 3 Figures)	41
Subpicosecond Argon Pumped Fibre Raman Laser By R. Leonhardt and J.D. Harvey (With 3 Figures)	45
Generation and Amplification of Femtosecond Pulses at 800nm By P. Georges, F. Salin, F. Estable, G. Roger, and A. Brun (With 3 Figures)	48
Femtosecond Laser Cavity Dispersion Measurement Using Soliton Properties By F. Salin, P. Grangier, P. Georges, G. Roger, and A. Brun (With 3 Figures)	51
Physical Properties of Coupled Cavity Lasers Used for Ultrashort Pulse Generation By M. Morin, Y. Champagne, F. Martin, R. Vallée, N. McCarthy, and M. Piché (With 3 Figures)	54
Continuous Wave Diode Laser Seeding of Tunable Femtosecond Soliton Pulses By E.J. Greer, D.M. Patrick, J.I. Vukusic, P.G.J. Wigley, and J.R. Taylor (With 2 Figures)	57
Gain Compression and Recovery Dynamicsin Multiple Quantum Well Optical AmplifiersBy J.M. Wiesenfeld, G. Eisenstein, M. Wegener, D.S. Chemla,G. Raybon, U. Koren, and S. Weiss (With 3 Figures)	60
Generation of Blue-Green 10 fs Pulses Using an Excimer-Pumped Dye Amplifier By R.W. Schoenlein, JY. Bigot, M.T. Portella, and C.V. Shank (With 3 Figures)	63

Pulse Compression of a Mode-Locked Ti:Sapphire Laser By J.D. Kafka, M.L. Watts, D.J. Roach, M.S. Keirstead, H.W. Schaaf, and T. Baer (With 4 Figures)	66
Coupled-Cavity Resonant Passive Modelocked (RPM) Ti:Sapphire Laser By U. Keller, W.H. Knox, and H. Roskos (With 5 Figures)	69
Self-Starting Additive Pulse Mode-Locking of a Nd:Glass Laser By Ch. Spielmann, F. Krausz, E. Wintner, and A.J. Schmidt (With 3 Figures)	72
Soliton-like Pulse Shaping in a cw Passively Mode-Locked Ti:Al ₂ O ₃ Laser By Y. Ishida, N. Sarukura, and H. Nakano (With 1 Figure)	75
Sub-picosecond 38 W Optical Pulses from a Hybrid Mode Locked Semiconductor Laser System By P.J. Delfyett, CH. Lee, L. Florez, N. Stoffel, N. Andreadakis, T. Gmitter, G.A. Alphonse, and J.C. Connolly (With 2 Figures)	78
Femtosecond Generation of Mid Infrared Pulses at 8.5 kHz via Parametric Mixing in AgGaS ₂ By P.C. Becker, D. Gershoni, and A. Prosser (With 3 Figures)	81
Femtosecond Pulses in the Medium Infrared by Down-Conversion of a Traveling Wave Dye Laser By T. Elsaesser and M.C. Nuss (With 3 Figures)	84
Pulse Evolution in a Coupled-Cavity Mode-Locked KCI:Tl Color-Center Laser By X. Zhu, W. Sleat, D. Walker, and W. Sibbett (With 3 Figures)	87
Pulse Evolution in a Coupled-Cavity Mode-Locked KCI:Tl Color-Center Laser By X. Zhu, W. Sleat, D. Walker, and W. Sibbett (With 3 Figures)	8′

Part II High Intensity Sources and Interactions

Ultrahigh Peak Power Generation: Present and Future	
By P. Bado, J.S. Coe, J. Squier, F. Salin, CY. Chien, JP. Tapié,	
and G.A. Mourou (With 1 Figure)	92
Very High Order Harmonic Generation	
By L.A. Lompré, A.L'Huillier, M. Ferray, and G. Mainfray	
(With 2 Figures)	96
Time-Resolved Spectral Shifts of Femtosecond Pulses	
in Atmospheric Density Plasmas	
By W.M. Wood, W.C. Banyai, J.L. Trisnadi, and M.C. Downer	
(With 2 Figures)	101

Characterization of a High-Intensity, Subpicosecond XeCl Laser System By A.J. Taylor, T.R. Gosnell, J.P. Roberts, D.C. MacPherson, and C.B. Tallman (With 1 Figure)	104
Soft-X-Ray Generation from 100 fs Irradiation of Thin Film Targets By H.W.K. Tom, O.R. Wood, II, G.D. Aumiller, and M.D. Rosen	104
(With 4 Figures)	107
Ultrafast Microscopy of Exploding Solids By D.D. Dlott (With 4 Figures)	110
Femtosecond Melting of Diamond By D.H. Reitze, H. Ahn, X. Wang, and M.C. Downer (With 2 Figures)	113
Femtosecond Photoemission and Reflectivity Measurements of High Temperature Electron Dynamics in Solid Density Plasmas By W.C. Banyai, D.C. Anacker, X.Y. Wang, D.H. Reitze, G.B. Focht, M.C. Downer, and J.L. Erskine (With 4 Figures)	116
Second Harmonic Generation in Femtosecond Laser-Produced Plasmas By T. Engers, H. Schüler, W. Fendel, H. Schulz, and D. von der Linde (With 3 Figures)	119
Enhanced Absorption and ASE Pedestal Suppression in the Generation of Ultrashort-Pulse Solid-Density Plasmas By H.C. Kapteyn, M.M. Murnane, A. Szoke, A. Hawryluk, and R.W. Falcone (With 2 Figures)	122
Proposed Source of Sub-picosecond Far Infrared Radiation By H. Hamster and R.W. Falcone (With 4 Figures)	125
Part III Spectroscopic Techniques and Nonlinear Optics	
Picosecond Stimulated Raman Measurement of Enhanced Optical Nonlinearities in a Conjugated Polymer By G.J. Blanchard and J.P. Heritage (With 3 Figures)	130
Spontaneous Emission and Ultrafast Dephasing in Front of a Mirror By K.E. Drabe, G. Cnossen, and D.A. Wiersma (With 2 Figures)	133
Polariton Effects in Transient Grating Experiments By J. Knoester	136
Atomic Wave Packets and Optical Pulses By L.D. Noordam, A. ten Wolde, H.G. Muller, A. Lagendijk, T.F. Gallagher, and H.B. van Linden van den Heuvell (With 3 Figures)	139
High Time Resolution and Coherence Effects with Incoherent Light in the Raman Fringe Decay By M Müller K. Wynne and LD W. van Voorst (With 2 Figures)	147
ω_j	174

Х

Fluorescence Detection of Femtosecond Accumulated Photon Echo By K. Uchikawa, H. Ohsawa, T. Suga, A. Furusawa, and S. Saikan (With 4 Figures)	145
Analysis of Femtosecond Pulse Systems Using Ray-Pulse Matrices By A.G. Kostenbauder	148
Picosecond Universal Optical Fluctuation in Strongly Disordered Solids By M. Tomita and M. Matsuoka (With 4 Figures)	151
Wavepacket Theory of Femtosecond Dynamic Absorption Spectroscopy By W.T. Pollard and R.A. Mathies (With 2 Figures)	154
The Anti-Resonant Ring in Ultrafast Excite–Probe Spectroscopy By R. Trebino and C.C. Hayden (With 2 Figures)	157
Simultaneous Two-Photon Absorption and Second Harmonic Generation in CdSe By A. Penzkofer, M. Schäffner, and X. Bao (With 1 Figure)	160
Anomalous Dispersion of the Electronic Kerr Effect n ₂ By D.J. Hagan, Y.Y. Wu, E. Canto, M. Sheik-bahae, A.A. Said, J. Young, T.H. Wei, M. Junnarkar, and E.W. Van Stryland (With 5 Figures)	163
Electronically Programmable Femtosecond Pulse Shaping Using a Multielement Phase Modulator By A.M. Weiner, D.E. Leaird, J.S. Patel, and J.R. Wullert (With 5 Figures)	166
Pulsed Diffusing-Wave Spectroscopy: Pathlength Specific Observation of Speckle Fluctuation Spectra from Dense Colloids By A.G. Yodh, P.D. Kaplan, and D.J. Pine (With 2 Figures)	160
by A.G. Touri, T.D. Kapian, and D.J. Time (what 2 Figures)	109

Part IV Nonlinear Effects in Optical Fibers

Ultrafast All-Optical Fiber Soliton Logic Gates By M.N. Islam, C.E. Soccolich, and D.A.B. Miller (With 4 Figures) .	174
Propagation and Amplification of Ultrashort Optical Soliton Pulses in Erbium-Doped Fibers for Very High Speed Communication By M. Nakazawa (With 6 Figures)	179
Observation of Two-Color Soliton Collisions in Optical Fiber By S.R. Friberg, W. Jiang, Y. Sakai, and R.J. Hawkins	
(With 3 Figures)	184
Modulational Instability for Normal Dispersion By J.E. Rothenberg (With 3 Figures)	187

Ultrafast All-Optical Switching in a Polarization-Maintaining Fiber By H. Vanherzeele and B.K. Nayar (With 2 Figures)	190
Observation of Induced Phase Modulation of Femtosecond Pulses in Glass and Organic Fibers	
By M. Yamashita, K. Torizuka, and T. Uemiya (With 3 Figures)	193

Part V Optoelectronics

By XC. Zhang, B.B. Hu, J.T. Darrow, S.H. Xin, and D.H. Auston (With 5 Figures)	98
Femtosecond Excitonic Sampling in Submicron Thickness Coplanar Striplines By W.H. Knox, G.E. Doran, B. Tell, K.W. Goossen, G. Hasnain, J. Cunningham, and D.S. Chemla (With 3 Figures))3
Picosecond Pulse Generation Circuits Using a GaAs Nonlinear Transmission Line By C.J. Madden, R.A. Marsland, D.M. Bloom, and M.J.W. Rodwell (With 3 Figures))6
Microwave Properties of Anisotropic Materials Characterized with Picosecond Transient Radiation By G. Arjavalingam, Y. Pastol, G.V. Kopcsay, and JM. Halbout (With 3 Figures))9
Microwave Phase Locking Using an Electro-optic Harmonic Mixer By Ming G. Li, E.A. Chauchard, Chi H. Lee, and Hing-Loi A. Hung (With 3 Figures)	12
Broadband Microwave Reflection Experiments with Picosecond Transient Radiation By W.M. Robertson, G. Arjavalingam, G.V. Kopcsay, and JM. Halbout (With 3 Figures)	15
Ultrafast Coplanar Air-Transmission Lines By D.R. Dykaar, A.F.J. Levi, and M. Anzlowar (With 1 Figure) 21	18

Part VI Quantum Wells; Reduced Dimensionality

2

Femtosecond Spectroscopy of Quasi-Zero-Dimensional Magneto-Excitons By J.B. Stark, W.H. Knox, and D.S. Chemla (With 3 Figures)	227
On the Lineshape of Time-Resolved Four-Wave Mixing By M. Wegener, G. Sucha, EO. Göbel, D.S. Chemla, S. Schmitt-Rink, and W. Schäfer (With 2 Figures)	230
Stimulated Photon Echoes and Free Polarization Decay in GaAs Multiple Quantum Well Structures: Evidence for Localized and Delocalized Excitons By M.D. Webb, S.T. Cundiff, and D.G. Steel (With 3 Figures)	233
Γ -X Intervalley Electron Transfer Rates in Type-II Al _x Ga _{1-x} As/AlAs Superlattices By J. Nunnenkamp, J. Kuhl, K. Ploog, J. Feldmann, E.O. Göbel, P. Dawson, and C.T. Foxon (With 3 Figures)	236
Two-Dimensional Carrier–Carrier Screening Studied	
By JY. Bigot, M.T. Portella, R.W. Schoenlein, C.V. Shank, and J.E. Cunningham (With 3 Figures)	239
Femtosecond Spectroscopy of Highly Excited Cu ₂ O By A. Mysyrowicz, D. Hulin, and E. Hanamura (With 2 Figures)	244
Dynamics of Excitons in Conjugated Polymers By M. Yoshizawa, M. Taiji, and T. Kobayashi (With 3 Figures)	247
Femtosecond Transient-Grating Experiments in Quantum Wells By K. Leo, E.O. Göbel, T.C. Damen, J. Shah, S. Schmitt-Rink, W. Schäfer, J.F. Müller, K. Köhler, and P. Ganser (With 4 Figures)	250
Femtosecond Quantum Beats in Excitons of a Layered Semiconductor BiI ₃ By T. Tokizaki, A. Nakamura, Y. Ishida, T. Yajima, I. Akai, and T. Karasawa (With 3 Figures)	253
Picosecond Photoluminescence of AlGaAs/GaAs Quasi-Quantum Wires and Boxes By H.Z. Wang, X.G. Hwang, W.Z. Lin, and Z.X. Yu (With 2 Figures)	256
Absorption Saturation Dynamics in Capped CdSe Microcrystallites Exhibiting Quantum Confinement By W.L. Wilson, M.G. Bawendi, L. Rothberg, P.J. Carrol, T. Jedju, L. Brus, and M.L. Steigerwald (With 5 Figures)	259
Picosecond Imaging of Photoexcited-Carrier Transport in GaAs/AlGaAs Multiple Quantum Wells	
By D.R. Wake, H.W. Yoon, J.S. Preston, H. Morkoç, and J.P. Wolfe (With 3 Figures)	262
······································	 XIII
	/ 1 11

Fast Recovery of Excitonic Absorption Peaks in Tunneling Bi-Quantum-Well Structures By A. Tackeuchi, S. Muto, T. Inata, and T. Fujii (With 4 Figures)	265
Degenerate Four Wave Mixing in Staggered Type-II $Al_xGa_{1-x}As/AlAs$ Multiple Quantum Well Structures By T. Mishina, F. Sasaki, and Y. Masumoto (With 2 Figures)	268
B-Exciton Bleaching in Bulk CdSe By D. Braun, W.W. Rühle, and J. Collet (With 3 Figures)	271
Femtosecond Room Temperature Measurements of Transport over Nanometer Dimensions in Quantum-Confined Heterostructures By D.P. Norwood, HE. Swoboda, M.D. Dawson, T.F. Boggess, A.L. Smirl, and T.C. Hasenberg (With 1 Figure)	274
Femtosecond Nonlinear Optical Properties of GaAs/AlAs Type-II Superlattices By G.R. Olbright, W.S. Fu, J.F. Klem, T.E. Zipperian, R. Binder, and S.W. Koch (With 1 Figure)	277
Part VII Semiconductors; Solid-State Physics	
Ultrafast Scattering Times in Amorphous Silicon By D. Hulin, A. Mourchid, R. Vanderhaghen, and P.M. Fauchet (With 3 Figures)	282
By M.T. Portella, JY. Bigot, R.W. Schoenlein, C.V. Shank, and J.E. Cunningham (With 1 Figure)	285
Time-Resolved Picosecond Photon Echo Studies of Phase Relaxation in CdSSe Mixed Crystals By U. Siegner, G. Noll, S.G. Shevel, and E.O. Göbel (With 2 Figures)	288
Direct Observation of the Electron and Hole Contributions in the Impulse Response of a Metal-Semiconductor-Metal Schottky Diode By M. Lambsdorff, J. Kuhl, M. Klingenstein, C. Moglestue, J. Rosenzweig, A. Axmann, J. Schneider, H. Leier, and A. Forchel (With 2 Figures)	291
Ultrafast Recombination in Ion-Damaged InP Studied by Femtosecond Luminescence By K.F. Lamprecht, R.A. Höpfel, and L. Palmetshofer (With 2 Figures)	294
Subpicosecond Photoconductivity in III-V Compound Semiconductors Using Low Temperature MBE Growth Techniques By S. Gupta, J. Pamulapati, J. Chwalek, P.K. Bhattacharya, and G. Mourou (With 2 Figures)	297

Nonequilibrium Carrier Dynamics in GaAs Semiconductors Induced by Energetic Ions By D. McMorrow, A.R. Knudson, and A.B. Campbell (With 3 Figures)	300
Ultrafast Relaxation Processes of Hot Carriers in Graphite By K. Seibert, G.C. Cho, W. Kütt, H. Kurz, D.H. Reitze, M.C. Downer, and A.M. Malvezzi (With 2 Figures)	303
Femtosecond Dynamics of Photo-Generated Carriers in Amorphous Hydrogenated Germanium By M. Wraback, J. Tauc, D. Pang, W. Paul, and Z. Vardeny (With 2 Figures)	306
Ultrafast Pump–Probe X-Valley Absorption Spectroscopy in GaAs By W.B. Wang, N. Ockman, M.A. Cavicchia, M. Yan, and R.R. Alfano (With 4 Figures)	309
Subpicosecond Nonlinearities of Semiconductor Near Infrared Bragg Reflectors By G. Le Saux, J.P. Pocholle, P. Georges, J.P. Schnell, F. Salin, M. Papuchon, and A. Brun (With 4 Figures)	312
Femtosecond Thermomodulation of Single-Crystalline and Polycrystalline Gold Films By H.E. Elsayed-Ali, T. Juhasz, G.O. Smith, and W.E. Bron (With 3 Figures)	315
Vibrational Exciton Decay in Uranyl Crystals by Picosecond Coherent Raman Scattering: Energy Bottlenecks and High Order Relaxation Mechanisms By E.L. Chronister and R.A. Crowell (With 3 Figures)	318
Second-Harmonic Efficiency and Reflectivity of GaAs During Femtosecond Melting By JK. Wang, P. Saeta, Y. Siegal, E. Mazur, and N. Bloembergen (With 2 Figures)	321
Picosecond Time-Resolved Measurements of Photorefractive Grating Dynamics in Zincblende Semiconductors By A.L. Smirl, M.D. Dawson, W.A. Schroeder, T.S. Stark, T.F. Boggess, and G.C. Valley (With 2 Figures)	324

Part VIII Coherent Phonons

Hot Phonon Spectra of Polar Semiconductors	
Studied via Picosecond Free Carrier Absorption Between 5 and $10 \mu m$	
By T. Elsaesser, R.J. Bäuerle, R. Klann, and W. Kaiser	
(With 1 Figure)	328

Resonant Excitation of Coherent Optic Phonons by Femtosecond Multiple-Pulse Impulsive Stimulated Raman Scattering	
By A.M. Weiner, D.E. Leaird, G.P. Wiederrecht, and K.A. Nelson (With 3 Figures)	331
Impulsive Phase Coherent Femtosecond Spectroscopy of Atomic and Molecular Transients with Phase-Locked Pulse Pairs By A.J. Ruggiero, N.F. Scherer, M. Du, and G.R. Fleming (With 2 Figures)	334
Direct Time-Resolved Observation of Coherent-Phonon Oscillations in III-V Compounds By G.C. Cho, W. Kütt, M. Strahnen, A. Esser, U. Lemmer, and H. Kurz (With 1 Figure)	337
Excitation of Low Frequency Polaritons in PbTiO ₃ with Femtosecond Pulses By J. Etchepare, G. Grillon, A. Antonetti, J.C. Loulergue, M.D. Fontana, and G.E. Kugel (With 3 Figures)	340
Time-Resolved Electron-Hole Plasma and Optical Phonon Interaction in GaP By G.O. Smith, T. Juhasz, and W.E. Bron (With 2 Figures)	343

Part IX Superconductors

Far-Infrared Spectroscopy of High Temperature Superconductors with Terahertz Electrical Pulses	
By M.C. Nuss, K.W. Goossen, P.M. Mankiewich, M.L. O'Malley, J.L. Marshall, and R.E. Howard (With 3 Figures)	348
Femtosecond Absorption Studies of Nonequilibrium Electronic Processes in High-T _c Superconductors By J. Chwalek, C. Uher, S. Gupta, J. Whitaker, G. Mourou, J. Agostinelli, and M. Lelental (With 2 Figures)	351
Femtosecond Thermomodulation Study of Conventional and High-T _c Superconductors By S.D. Brorson, A. Kazeroonian, J.S. Moodera, D.W. Face, T.K. Cheng, E.P. Ippen, M.S. Dresselhaus, G. Dresselhaus, G.L. Doll, T. Venkatesan, X.D. Wu, and A. Inam (With 3 Figures)	354
Rate of Electron–Phonon Relaxation in Niobium By K.M. Yoo, X.M. Zhao, M. Siddique, R.R. Alfano, D.P. Osterman, M. Radparvar, and J. Cunniff (With 2 Figures)	357

Part X Interfaces and Surfaces

Surface Vibrational Energy Relaxation: $c(2 \times 2)$ -CO/Cu(100) By S.F. Shane, L. Rothberg, L.H. Dubois, N.J. Levinos, M. Morin, and A.L. Harris (With 1 Figure)	362
Femtosecond Laser-Induced Structural Changes in Gallium Arsenide By H. Schulz, J. Bialkowski, K. Sokolowski-Tinten, and D. von der Linde (With 3 Figures)	365
Ultrafast Relaxation of Electrons Probed by Surface Plasmons at a Thin Silver Film By R.H.M. Groeneveld, R. Sprik, M. Wittebrood, and A. Lagendijk (With 3 Figures)	368
Picosecond Transient Surface Temperature Measurement by Reflection High-Energy Electron Diffraction By H.E. Elsayed-Ali and J.W. Herman (With 2 Figures)	371
Lifetime of an Adsorbate Substrate Vibration: H on Si(111) By P. Guyot-Sionnest, P. Dumas, Y.J. Chabal, and G.S. Higashi (With 2 Figures)	374
Pump–Probe Investigation of Femtosecond Desorption By F. Budde, T.F. Heinz, M.M.T. Loy, J.A. Misewich, and B.D. Smith (With 1 Figure)	377

Part XI Electron or Proton Transfer and Solvation

Femtosecond Dynamics of Single Electron Transfer in Aqueous Media By Y. Gauduel, S. Pommeret, N. Yamada, A. Migus, and A. Antonetti (With 4 Figures)	382
Femtosecond Studies of Electrons in Water By F.H. Long, Hong Lu, and K.B. Eisenthal (With 2 Figures)	387
Femtosecond Optical Spectroscopies of Solvated Polyatomic Molecules By S. Mukamel and Y.J. Yan (With 1 Figure)	390
Ultrafast Studies on Intramolecular Charge Transfer and Solvation By P.F. Barbara (With 2 Figures)	393
Dynamics of Intramolecular Electron Transfer in Polar Solvents By T. Okada, S. Nishikawa, K. Kanaji, and N. Mataga (With 3 Figures)	397
Femtosecond Proton Transfer Reactions in Electronically Excited Aromatic Molecules By T. Elsaesser, F. Laermer, W. Frey, W. Kaiser, M. Wiechmann, and H. Port (With 1 Figure)	402

Solvent/Solute Interactions Probed by Transient Absorption and Transient Raman Spectroscopy By T.L. Gustafson, K. Iwata, and W.L. Weaver (With 3 Figures)	405
Solvation and Barrierless Electron Transfer: How Different Are the Dynamics? By B. Bagchi, A. Chandra, and G.R. Fleming (With 2 Figures)	408
Low Temperature Ultrafast Charge Separation: Rate Versus Free Energy By M.P. O'Neil, G.L. Gaines, III, W.A. Svec, M.P. Niemczyk, and M.R. Wasielewski (With 2 Figures)	411
Solvent Dynamics by Transient Holeburning:	
By Tai Jong Kang, Jongwan Yu, and M. Berg (With 2 Figures)	414
Part XII Chemical Dynamics	
Femtosecond Dynamics from c.w. Spectroscopy By E.J. Heller (With 3 Figures)	418
Ultrafast Molecular Dynamics of Liquid Carbon Disulfide Observed at High Pressure in a Diamond Anvil Cell By B. Kohler and K.A. Nelson (With 2 Figures)	423
Femtosecond Transition-State Absorption Spectroscopy of Bi Atoms Produced by Bi ₂ Photodissociation By J.A. Misewich, J.H. Glownia, R.E. Walkup, and P.P. Sorokin (With 2 Figures)	426
Femtosecond Infrared Spectroscopy of Complex Molecules Using CW IR Lasers	
By R.M. Hochstrasser, P.A. Anfinrud, R. Diller, C. Han, M. Iannone, T. Lian, and B. Locke (With 4 Figures)	429
The Observation of Vibrational Relaxation and Solvent Reorientation Following Ultrafast Photodissociation of Cr(CO) ₆ By Soo-Chang Yu, Xiaobing Xu, R. Lingle, Jr., and J.B. Hopkins (With 2 Figures)	434
Ultrafast Rotational Dynamics of Electronically Excited Aniline Molecules in Solution By M.A. Pereira, P.E. Share, M.J. Sarisky, and R.M. Hochstrasser (With 2 Figures)	438
Dynamics of cis-Stilbene Isomerization in Solution By J.M. Jean, D.C. Todd, S.J. Rosenthal, A.J. Ruggiero, and G.R. Fleming (With 1 Figure)	441

Isomerization of cis-Stilbene in Ar and Kr Clusters: Direct Measurements of trans-Stilbene Formation Rates on a Picosecond Time Scale	
By H.Petek, K. Yoshihara, Y. Fujiwara, and J.G. Frey (With 2 Figures)	444
Rotational Dynamics in Simple and Nematogenic Liquids: Transient Grating Optical Kerr Effect Investigations By F.W. Deeg and M.D. Fayer (With 2 Figures)	447
Rotational Diffusion of Phenoxazine Dyes: Characterization of Molecular Friction By D.S. Alavi, R.S. Hartman, and D.H. Waldeck (With 2 Figures)	450
Linear Electron–Phonon Interaction in Dye-Doped Polymers Studied by Femtosecond Accumulated Photon Echo By S. Saikan (With 2 Figures)	453
Time-Resolved Decay of Absorption Anisotropy due to Rotation of Free Molecules in the Gas Phase By N.A. Borisevich, E.V. Khoroshilov, I.V. Kryukov, P.G. Kryukov, G.B. Tolstorozhev, M.Yu. Shakhbazyan, and A.V. Sharkov (With 1 Figure)	456
Ultrafast Predissociation Dynamics of Isolated Small Molecules from UV Resonance Raman Depolarization Ratios By A.B. Myers and Bulang Li (With 2 Figures)	459
Vibrational Dynamics of Chloroform, Bromoform and Iodoform By H.J. Bakker, P.C.M. Planken, L. Kuipers, and A. Lagendijk (With 2 Figures)	462
Photoisomerization Dynamics of Methylstilbenes By N.S. Park and D.H. Waldeck (With 2 Figures)	465
Ultrafast Energy Trapping in Mercuric Iodide By L.R. Williams, R.J. Anderson, and M.J. Banet (With 2 Figures)	468
Non-Markovian Dynamics of Azulene in Solution By E.T.J. Nibbering, K. Duppen, and D.A. Wiersma (With 3 Figures)	471
Resonance Raman Scattering as a Probe of Ultrafast Electronic Surface Hopping and Nuclear Vibrational Motion By J.Z. Zhang, E.J. Heller, and D.G. Imre (With 2 Figures)	474
Nickel(II) Octaethylporphyrin: Conformational Dynamics, Ligand Binding and Release	
By S.H. Courtney, T.M. Jedju, J.M. Friedman, L. Rothberg, R.G. Alden, M.S. Park, and M.R. Ondrias (With 4 Figures)	477
	хіх

Application of Ultrafast Broadband Infrared Spectroscopy to Measurement of Metal-Carbonyl Dynamics By S.A. Angel, P.A. Hansen, E.J. Heilweil, and J.C. Stephenson	
(With 5 Figures)	480
Broadband Ultrafast Absorption Spectroscopy in the Hard Ultraviolet: Evolution of the CF_2 Radical upon Photodissociation of CF_2Br_2 By T.R. Gosnell, A.J. Taylor, and J.L. Lyman (With 2 Figures)	483
Femtosecond Transient Absorption Spectroscopy of Photochemical Reactions in Solution By A.G. Joly and K.A. Nelson (With 2 Figures)	486
Subpicosecond Infrared Spectroscopy: The Condensed Phase Photochemistry of Iron Carbonyls By P.A. Anfinrud, C. Han, T. Lian, and R.M. Hochstrasser (With 3 Figures)	489
Excited State Dynamics of Jet-Cooled Substituted Indoles: The Role of Polar Interactions in ${}^{1}L_{a} - {}^{1}L_{b}$ State Coupling By D.R. Demmer, G.W. Leach, and S.C. Wallace (With 3 Figures)	492
Molecular Alignment in the Photoisomerization of Stilbene By S.T. Repinec, R.J. Sension, S.A. Abrash, and R.M. Hochstrasser (With 4 Figures)	495
Femtosecond and Picosecond Laser Photolysis Studies of Photoreduction Processes of Excited Benzophenone and Its Derivatives in Solution By H. Miyasaka, K. Morita, M. Kiri, and N. Mataga (With 2 Figures)	498
Femtosecond Laser Photolysis Studies on the Conformation Change of Benzil in Solutions By H. Miyasaka and N. Mataga (With 3 Figures)	501
Fast Change in the Excited State Absorption Spectrum of TPM Dye Solutions By M.M. Martin, P. Plaza, Nguyen Dai Hung, and Y.H. Meyer (With 2 Figures)	504
Temperature Dependent Superradiant Decay in Molecular Aggregates By F.C. Spano, J.R. Kuklinski, and S. Mukamel (With 2 Figures)	507
Studies of Diffusion-Influenced Fluorescence Quenching By D.D. Eads, B.G. Dismer, and G.R. Fleming (With 2 Figures)	510
Zero-Phonon Line and Ultrafast Dephasing in Nile Blue Doped Polymer Film By S. Nakanishi, H. Ohta, and H. Itoh (With 4 Figures)	513

The Impact Approximation in Transition-State Absorption	
Spectroscopy: On the Possibility of Obtaining Difference Potentials	
Directly from the Transient Spectra	
By R.E. Walkup, J.A. Misewich, J.H. Glownia, and P.P. Sorokin	
(With 2 Figures)	516

Part XIII Biology

	XXI
Index of Contributors	551
Subpicosecond Fluorescence Anisotropy Measurements of Tryptophanyl Residues in Proteins By J.E. Hansen, S.J. Rosenthal, and G.R. Fleming (With 3 Figures)	548
Picosecond Polarization Studies of Protein Relaxation By Xiaoliang Xie and J.D. Simon (With 1 Figure)	544
Sub-picosecond Resonance Raman Spectroscopy of Some Biological Systems By R. van den Berg and M.A. El-Sayed (With 3 Figures)	541
Vibrational Temperatures of Photoexcited Deoxy-Hemoglobin By S.H. Courtney, J.M. Friedman, R.G. Alden, M.D. Chavez, and M.R. Ondrias (With 3 Figures)	538
Picosecond Transient Absorption and Dichroism Studies on Excitation Transfer in Allophycocyanin By W.F. Beck, M. Debreczeny, Xinwei Yan, and K. Sauer (With 1 Figure)	535
Polarized Pump–Probe Spectroscopy of the Q_y Band of BChl a-Protein from <i>Prosthecochloris aestuarii</i> : Evidence for Ultrafast Exciton Localization By P.A. Lyle and W.S. Struve (With 2 Figures)	532
Picosecond Transient Phase Grating Studies of the Energetics and Structure Dynamics of Heme Proteins By L. Genberg, L. Richard, G. McLendon, and R.J.D. Miller (With 3 Figures)	529
Primary Charge Separation Process in Reaction Centers from Chloro flexus aurantiacus Bacterium By J.L. Martin, J.C. Lambry, M. Ashokkumar, M.E. Michel-Beyerle, R. Feick, and J. Breton (With 3 Figures)	524
Primary Charge Separation in the Photosynthesis of Bacterial Reaction Centers By W. Zinth, W. Holzapfel, U. Finkele, C. Lauterwasser, K. Dressler, and P. Hamm (With 2 Figures)	520

Primary Charge Separation in the Photosynthesis of Bacterial Reaction Centers

W. Zinth, W. Holzapfel, U. Finkele, C. Lauterwasser, K. Dressler, and P. Hamm

Physik-Department E 11, Technische Universität München, Arcisstrasse 21, D-8000 München 2, Fed. Rep. of Germany

<u>Abstract</u>. The very rapid initial electron transfer is studied for two purple bacteria. The results favor a model of electron transfer involving a bacteriochlorophyll anion radical.

Photosynthesis is the most important photochemical reaction in nature, where light energy is converted to chemical energy. Most photosynthetic systems act according to a common principle: the absorption of a photon is followed by a first charge separation and the build-up of a potential gradient. Finally, in complex biochemical processes the synthesis of energy storing molecules takes place. The crucial part of the photosynthetic energy conversion is the primary charge separation, which occurs in so-called reaction centers (RC).

It is the purpose of this paper to show that the same reaction model well describes the primary charge separation for different purple bacteria. This fact is not obvious, since different tetrapyrols, bacteriochlorophylls (BChl) and bacteriopheophytins (BPh) are present in various reaction centers, e.g. BChl a and BPh a are essential pigments in the reaction centers of Rhodobacter (Rb.) sphaeroides while BChl b and BPh b operate in the reaction centers of Rhodopseudomonas (Rps.) viridis. For both reaction centers x-ray structure analysis has revealed the molecular arrangement /l/. It was shown that the prosthetic groups and related aminoacids are in a very similar arrangement in both reaction centers: two BChl molecules are in close contact acting as a primary electron donor P. The other pigments are arranged in two branches, A and B. Starting from the primary donor, the special pair P, one finds an accessory bacteriochlorophyll (B), a bacteriopheophytin (H), and a quinon (Q) on each branch. It was shown that the electron transfer occurs via the A-branch and after about 3 - 4 ps a radical pair $P^+\,H_A^-$ is formed. Another 200 ps later the electron reaches the quinon Q_A building the intermediate $P^+Q_A^-$. The role of the accessory bacteriochlorophyll B_A is still in debate /2, 3/. Recent experiments on Rb. sphaeroides have proven the existence of a previously unresolved 0.9 ps kinetic which was interpreted to be related with a radical pair $P^+B_A^-$ as the real intermediate formed prior to $P^+H_A^-$ /4,5/.

The present experiments were performed using the excite and probe technique with weak subpicosecond pulses from two different laser-amplifier systems with repetition rates of 10 Hz. Excitation was made of the lowest energy band of P (at 860 nm for Rb.sphaeroides and at 950 nm for Rps. viridis). Probing was performed by a 5 nm to 20 nm wide fraction of a femtosecond light continuum. Parallel polarisation of exciting and probing pulses was used in the experiments presented here. The reaction centers were kept at room temperature under stirring.

> Springer Series in Chemical Physics, Vol. 53 Ultrafast Phenomena VII Editors: C.B. Harris · E.P. Ippen · G.A. Mourou · A.H. Zewail © Springer-Verlag Berlin, Heidelberg 1990

<u>Fig.1</u> Transient absorption data for reaction centers from Rb. sphaeroides (a,b) and Rps. viridis (c,d). The filled circles represent the experimental data, the solid lines follow model functions using the time constants given in the text.

Time-resolved absorption data are shown in Fig.l for different probing wavelengths. The decay of the excited electronic level of the special pair is seen at $\lambda_{PT} = 920$ nm for Rb. sphaeroides (Fig.la) and $\lambda_{PT} = 1050$ nm for Rps. viridis (Fig.lc). Both probing wavelengths are located in the long-wave wing of the P absorption band (see Fig.2a and 2d), where the excited electronic level is visible via its stimulated emission. In Fig.la and lc the population of P^* decays exponentially with a time constant around 3.5 ps. The situation is drastically different at some wavelengths close to the absorption band of the accessory bacteriochlorophyll. An additional fast kinetic component becomes evident. In Rb. sphaeroides at 785 nm (Fig.lb) a first absorption increase at time zero is followed by a fast relative absorption decrease before the 3.5 ps process takes over, again increasing the absorption. For Rps. viridis one finds the additional fast kinetic component quite clearly at 820 nm (Fig.ld). Extensive studies at different wavelengths gave numbers for this fast process of 0.9±0.4 ps in Rb.sphaeroides and 0.65±0.3 ps in Rps. viridis. In addition they supplied amplitudes of the various kinetic components which can be used to calculate difference spectra of the intermediate states for specific sequential reaction models.

When the fast process is assumed to precede the 3.5 ps decay, the spectral data require the existence of two excited electronic states and the electron should be transferred directly from the special pair P to the bacteriopheophytin H_A . However, this direct electron transfer gives serious difficulties for the microscopic theoretical description of the electron transfer process. In addition, recent results on mutants of reaction centers of Rb. spheroides are in contradiction to this reaction

tion model /6/. The second possibility is a model, where the 3.5 ps process precedes the 0.9ps/0.65ps decay.

	hν		3.5ps		0.9ps		220ps		
Ρ		Ιı		I2		Iз		۰I۹	
			0.65ps						
		P*		P+BA	-	P+HA	-	P+QA	-

Of interest are the difference spectra of intermediate I_2 and I4 which are shown in Fig.2. The spectrum $\sigma_4 - \sigma_0$ of the final picosecond product I4 $(P^+Q_A^-)$ does not depend on the reaction model used. The absorption changes observed are well known. They reflect the disappearance of the absorption of the special pair P and small contributions from P^+ and from electrochromic shifts. The spectrum $\sigma_2 - \sigma_0$ of intermediate I₂ again exhibits some of the features known for P⁺ formation. In addition, there are strong absorption changes of the Qy band of the accessory bacteriochlorophyll (at 800 nm for Rb. sphaeroides, at 820 nm for Rps. viridis) and around 660 nm (in the bacteriochlorophyll anion band) indicative of the formation of a bacteriochlorophyll anion radical. Consequently, the calculated difference spectra give strong evidence of the existence of $P^+B_A^-$ as a short-lived intermediate in the primary electron transfer in the reaction centers of the two purple bacteria. The notion of $P^+B_A^-$ being the second intermediate is also strongly supported by additional experiments on the transient dichroism /5/.

In conclusion: We have shown that the primary electron transfer in different bacterial reaction centers proceeds according

to a common reaction scheme, where a subpicosecond - previously undetected - reaction is involved. The present data support the model of sequential electron transfer. From the excited electronic state of the special pair P* an electron proceeds to the accessory bacteriochlorophyll within 3.5 ps forming the radical pair state $P^+B_A^-$, which decays more rapidly with 0.9ps/0.65ps to the radical pair state $P^+H_A^-$ where the electron has been transferred over a distance of approximately 17A to the bacteriopheophytin.

Acknowledgement Experiments were performed in collaboration with W. Kaiser, H. Scheer, D. Oesterhelt, U. Stilz, S. Buchanan, and H. Michel.

References

- /1/ J. Deisenhofer, H. Michel, EMBO J. 8 (1989) 2149 /2/ J.L. Martin, J. Breton, A.J. Hoff, A. Migus, A. Antonetti, Proc. Natl. Acad. Sci. USA 83 (1986) 957
- /3/ J. Breton, J.L. Martin, A. Migus, A. Antonetti, A. Orszag, Proc. Natl. Acad. Sci. USA 83 (1986) 5121
- /4/ W. Holzapfel, U. Finkele, W. Kaiser, D. Oesterhelt, H. Scheer, H.U. Stilz, W. Zinth, Chem. Phys. Lett. 160 (1989) 1
- /5/ W. Holzapfel, U. Finkele, W. Kaiser, D. Oesterhelt, H. Scheer, H.U. Stilz, W. Zinth, Proc. Natl. Acad. Sci. USA, accepted for publication (1990).
- /6/ U. Finkele, C. Lauterwasser, W. Zinth, K. Gray, D. Oesterhelt, to be published (1990)