349 research outputs found

    Qubits from Number States and Bell Inequalities for Number Measurements

    Full text link
    Bell inequalities for number measurements are derived via the observation that the bits of the number indexing a number state are proper qubits. Violations of these inequalities are obtained from the output state of the nondegenerate optical parametric amplifier.Comment: revtex4, 7 pages, v2: results identical but extended presentation, v3: published versio

    Integrability breakdown in longitudinaly trapped, one-dimensional bosonic gases

    Full text link
    A system of identical bosons with short-range (contact) interactions is studied. Their motion is confined to one dimension by a tight lateral trapping potential and, additionally, subject to a weak harmonic confinement in the longitudinal direction. Finite delay time associated with penetration of quantum particles through each other in the course of a pairwise one-dimensional collision in the presence of the longitudinal potential makes the system non-integrable and, hence, provides a mechanism for relaxation to thermal equilibrium. To analyse this effect quantitatively in the limit of a non-degenerate gas, we develop a system of kinetic equations and solve it for small-amplitude monopole oscillations of the gas. The obtained damping rate is long enough to be neglected in a realistic cold-atom experiment, and therefore longitudinal trapping does not hinder integrable dynamics of atomic gases in the 1D regime

    Phase II study of CC-486 (oral azacitidine) in previously treated patients with locally advanced or metastatic nasopharyngeal carcinoma

    Get PDF
    BACKGROUND: Treatment options are limited for recurrent nasopharyngeal carcinoma (NPC). We report results from a phase II study of CC-486 (oral azacitidine) in advanced NPC. PATIENTS AND METHODS: Patients with locally advanced or metastatic NPC and 1-2 prior treatment regimens received CC-486 300 mg daily on days 1-14 of 21-day cycles until disease progression or unacceptable toxicity. The first 6 patients of Asian-Pacific Islander (API) ethnicity received a reduced dose of 200 mg to preserve safety and tolerability; if well tolerated, subsequent API patients received CC-486 300 mg. The study could advance to stage 2 if > 4 patients achieved a response. Co-primary end-points were overall response rate (ORR) and progression-free survival (independent review). Key secondary end-points were overall survival and safety. RESULTS: Owing to faster-than-anticipated enrolment, 36 patients, including 13 of API ethnicity, were enrolled; the median age was 54.0 years. Most patients were male (81%) and had an Eastern Cooperative Oncology Group performance status 64 1 (97%). Among 25 efficacy-evaluable patients, the ORR was 12%; the median progression-free and overall survival were 4.7 and 18.0 months, respectively. The most common grade III/IV treatment-emergent adverse events were neutropenia (33%) and febrile neutropenia (11%). Twenty-one posttreatment deaths, primarily due to progressive disease or disease complications, and 1 on-treatment death (epistaxis, unrelated to study drug) occurred. The study did not advance to stage 2. CONCLUSION: CC-486 did not show sufficient clinical activity to support further development as monotherapy in this patient population. The safety profile of CC-486 in NPC was consistent with that in other solid tumours

    There is detectable variation in the lipidomic profile between stable and progressive patients with idiopathic pulmonary fibrosis (IPF)

    Get PDF
    Background Idiopathic pulmonary fibrosis (IPF) is a chronic interstitial lung disease characterized by fibrosis and progressive loss of lung function. The pathophysiological pathways involved in IPF are not well understood. Abnormal lipid metabolism has been described in various other chronic lung diseases including asthma and chronic obstructive pulmonary disease (COPD). However, its potential role in IPF pathogenesis remains unclear. Methods In this study, we used ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS) to characterize lipid changes in plasma derived from IPF patients with stable and progressive disease. We further applied a data-independent acquisition (DIA) technique called SONAR, to improve the specificity of lipid identification. Results Statistical modelling showed variable discrimination between the stable and progressive subjects, revealing differences in the detection of triglycerides (TG) and phosphatidylcholines (PC) between progressors and stable IPF groups, which was further confirmed by mass spectrometry imaging (MSI) in IPF tissue. Conclusion This is the first study to characterise lipid metabolism between stable and progressive IPF, with results suggesting disparities in the circulating lipidome with disease progression

    Investigation into the mechanisms by which microwave heating enhances separation of water-in-oil emulsions

    Get PDF
    The separation of water-in-oil emulsions made with Azeri crude was investigated using natural gravity settling and microwave heating techniques. Separation times could be reduced by an order of magnitude compared with untreated emulsions. Increasing the salinity of the water phase leads to a 15% average decrease in the settling time for untreated emulsions compared with over 90% for microwave-heated emulsions. An image analysis technique showed that the observed increases in settling time could not be attributed to changes in viscosity alone. Significant coalescence of water droplets occurs during microwave heating, however the effects of coalescence and viscosity reduction cannot be completely decoupled. Despite this, it is clear that it is the thermal effect of microwave heating that leads to improvements in settling times, and that any advantages in microwave heating over conventional heating can be explained by selective heating of the aqueous phase rather than so-called non-thermal effects

    Effect of charged impurity correlation on transport in monolayer and bilayer graphene

    Full text link
    We study both monolayer and bilayer graphene transport properties taking into account the presence of correlations in the spatial distribution of charged impurities. In particular we find that the experimentally observed sublinear scaling of the graphene conductivity can be naturally explained as arising from impurity correlation effects in the Coulomb disorder, with no need to assume the presence of short-range scattering centers in addition to charged impurities. We find that also in bilayer graphene correlations among impurities induce a crossover of the scaling of the conductivity at higher carrier densities. We show that in the presence of correlation among charged impurities the conductivity depends nonlinearly on the impurity density nin_i and can even increase with nin_i.Comment: 11 pages, 10 figures. arXiv admin note: text overlap with arXiv:1104.066

    Sharp constants in weighted trace inequalities on Riemannian manifolds

    Full text link
    We establish some sharp weighted trace inequalities W^{1,2}(\rho^{1-2\sigma}, M)\hookrightarrow L^{\frac{2n}{n-2\sigma}}(\pa M) on n+1n+1 dimensional compact smooth manifolds with smooth boundaries, where ρ\rho is a defining function of MM and σ(0,1)\sigma\in (0,1). This is stimulated by some recent work on fractional (conformal) Laplacians and related problems in conformal geometry, and also motivated by a conjecture of Aubin.Comment: 34 page

    Electromagnetic properties of graphene junctions

    Full text link
    A resonant chiral tunneling (CT) across a graphene junction (GJ) induced by an external electromagnetic field (EF) is studied. Modulation of the electron and hole wavefunction phases φ\varphi by the external EF during the CT processes strongly impacts the CT directional diagram. Therefore the a.c. transport characteristics of GJs depend on the EF polarization and frequency considerably. The GJ shows great promises for various nanoelectronic applications working in the THz diapason.Comment: 4 pages 3 figure

    Enhanced delivery and detection of terahertz frequency radiation from a quantum cascade laser within dilution refrigerator

    Get PDF
    We report on significant enhancements to the integration of terahertz (THz) quantum cascade lasers (QCL) and THz detection with a two-dimensional electron gas (2DEG) within a dilution refrigerator obtained by the inclusion of a multi-mesh 6 THz low-pass filter to block IR radiation, a Winston cone to focus light output, and gating the 2DEG for optimised sensitivity. We show that these improvements allow us to obtain a > 2.5 times reduced sample electron temperature (160 mK compared with 430 mK previously), during cyclotron resonance (CR) measurements of a 2DEG under QCL illumination. This opens up a route to performing sub-100 mK experiments using excitation by THz QCLs

    Crossovers in Unitary Fermi Systems

    Full text link
    Universality and crossover is described for attractive and repulsive interactions where, respectively, the BCS-BEC crossover takes place and a ferromagnetic phase transition is claimed. Crossovers are also described for optical lattices and multicomponent systems. The crossovers, universal parameters and phase transitions are described within the Leggett and NSR models and calculated in detail within the Jastrow-Slater approximation. The physics of ultracold Fermi atoms is applied to neutron, nuclear and quark matter, nuclei and electrons in solids whenever possible. Specifically, the differences between optical lattices and cuprates is discussed w.r.t. antiferromagnetic, d-wave superfluid phases and phase separation.Comment: 50 pages, 15 figures. Contribution to Lecture Notes in Physics "BCS-BEC crossover and the Unitary Fermi Gas" edited by W. Zwerge
    corecore