2,648 research outputs found

    Dark energy records in lensed cosmic microwave background

    Full text link
    We consider the weak lensing effect induced by linear cosmological perturbations on the cosmic microwave background (CMB) polarization anisotropies. We find that the amplitude of the lensing peak in the BB mode power spectrum is a faithful tracer of the dark energy dynamics at the onset of cosmic acceleration. This is due to two reasons. First, the lensing power is non-zero only at intermediate redshifts between the observer and the source, keeping record of the linear perturbation growth rate at the corresponding epoch. Second, the BB lensing signal is expected to dominate over the other sources. The lensing distortion on the TT and EE spectra do exhibit a similar dependence on the dark energy dynamics, although those are dominated by primary anisotropies. We investigate and quantify the effect by means of exact tracking quintessence models, as well as parameterizing the dark energy equation of state in terms of the present value (w0w_{0}) and its asymptotic value in the past (w∞w_{\infty}); in the interval allowed by the present constraints on dark energy, the variation of w∞w_{\infty} induces a significant change in the BB mode lensing amplitude. A Fisher matrix analysis, under conservative assumptions concerning the increase of the sample variance due to the lensing non-Gaussian statistics, shows that a precision of order 10% on both w0w_{0} and w∞w_{\infty} is achievable by the future experiments probing a large sky area with angular resolution and sensitivity appropriate to detect the lensing effect on the CMB angular power spectrum. These results show that the CMB can probe the differential redshift behavior of the dark energy equation of state, beyond its average.Comment: New version including substantial text change, three more figures and two more table

    Detecting X-ray filaments in the low redshift Universe with XEUS and Constellation-X

    Get PDF
    We propose a possible way to detect baryons at low redshifts from the analysis of X-ray absorption spectra of bright AGN pairs. A simple semi-analytical model to simulate the spectra is presented. We model the diffuse warm-hot intergalactic medium (WHIM) component, responsible for the X-ray absorption, using inputs from high-resolution hydro-dynamical simulations and analytical prescriptions. We show that the number of OVII absorbers per unit redshift with column density larger than 1013.510^{13.5} cm−2^{-2} - corresponding to an equivalent width of ∌\sim 1 km/s - which will be possibly detectable by {\it XEUS}, is \magcir 30 per unit redshift. {\it Constellation-X} will detect ∌6\sim 6 OVII absorptions per unit redshift with an equivalent width of 10 km/s. Our results show that, in a Λ\LambdaCDM Universe, the characteristic size of these absorbers at z∌0.1z\sim 0.1 is ∌1\sim 1 h−1h^{-1} Mpc. The filamentary structure of WHIM can be probed by finding coincident absorption lines in the spectra of background AGN pairs. We estimate that at least 20 AGN pairs at separation \mincir 20 arcmin are needed to detect this filamentary structure at a 3σ\sigma level. Assuming observations of distant sources using {\it XEUS} for exposure times of 500 ksec, we find that the minimum source flux to probe the filamentary structure is ∌2×10−12\sim 2\times 10^{-12} erg cm−2^{-2} s−1^{-1}, in the 0.1-2.4 keV energy band. Thus, most pairs of these extragalactic X-ray bright sources have already been identified in the {\it ROSAT} All-Sky Survey. Re-observation of these objects by future missions could be a powerful way to search for baryons in the low redshift Universe.Comment: 18 pages, 10 Figures. Two figures added, Sections 2 and 3 expanded. More optimistic results for Constellation-X. Accepted by MNRA

    An improved cosmological bound on the thermal axion mass

    Get PDF
    Relic thermal axions could play the role of an extra hot dark matter component in cosmological structure formation theories. By combining the most recent observational data we improve previous cosmological bounds on the axion mass m_a in the so-called hadronic axion window. We obtain a limit on the axion mass m_a < 0.42eV at the 95% c.l. (m_a < 0.72eV at the 99% c.l.). A novel aspect of the analysis presented here is the inclusion of massive neutrinos and how they may affect the bound on the axion mass. If neutrino masses belong to an inverted hierarchy scheme, for example, the above constraint is improved to m_a < 0.38eV at the 95% c.l. (m_a < 0.67eV at the 99% c.l.). Future data from experiments as CAST will provide a direct test of the cosmological bound.Comment: 5 Pages, 3 Figure

    Electronically excited rubidium atom in a helium cluster or film.

    Get PDF
    International audienceWe present theoretical studies of helium droplets and films doped with one electronically excited rubidium atom Rb( *) ((2)P). Diffusion and path integral Monte Carlo approaches are used to investigate the energetics and the structure of clusters containing up to 14 helium atoms. The surface of large clusters is approximated by a helium film. The nonpair additive potential energy surface is modeled using a diatomic in molecule scheme. Calculations show that the stable structure of Rb( *)He(n) consists of a seven helium atom ring centered at the rubidium, surrounded by a tirelike second solvation shell. A very different structure is obtained when performing a "vertical Monte Carlo transition." In this approach, a path integral Monte Carlo equilibration starts from the stable configuration of a rubidium atom in the electronic ground state adsorbed to the helium surface after switching to the electronically excited surface. In this case, Rb( *)He(n) relaxes to a weakly bound metastable state in which Rb( *) sits in a shallow dimple. The interpretation of the results is consistent with the recent experimental observations [G. Aubock et al., Phys. Rev. Lett. 101, 035301 (2008)]

    The effect of neutrinos on the matter distribution as probed by the Intergalactic Medium

    Full text link
    We present a suite of full hydrodynamical cosmological simulations that quantitatively address the impact of neutrinos on the (mildly non-linear) spatial distribution of matter and in particular on the neutral hydrogen distribution in the Intergalactic Medium (IGM), which is responsible for the intervening Lyman-alpha absorption in quasar spectra. The free-streaming of neutrinos results in a (non-linear) scale-dependent suppression of power spectrum of the total matter distribution at scales probed by Lyman-alpha forest data which is larger than the linear theory prediction by about 25% and strongly redshift dependent. By extracting a set of realistic mock quasar spectra, we quantify the effect of neutrinos on the flux probability distribution function and flux power spectrum. The differences in the matter power spectra translate into a ~2.5% (5%) difference in the flux power spectrum for neutrino masses with Sigma m_{\nu} = 0.3 eV (0.6 eV). This rather small effect is difficult to detect from present Lyman-alpha forest data and nearly perfectly degenerate with the overall amplitude of the matter power spectrum as characterised by sigma_8. If the results of the numerical simulations are normalized to have the same sigma_8 in the initial conditions, then neutrinos produce a smaller suppression in the flux power of about 3% (5%) for Sigma m_{\nu} = 0.6eV(1.2eV)whencomparedtoasimulationwithoutneutrinos.WepresentconstraintsonneutrinomassesusingtheSloanDigitalSkySurveyfluxpowerspectrumaloneandfindanupperlimitofSigmamΜ<0.9 eV (1.2 eV) when compared to a simulation without neutrinos. We present constraints on neutrino masses using the Sloan Digital Sky Survey flux power spectrum alone and find an upper limit of Sigma m_{\nu} < 0.9 eV (2 sigma C.L.), comparable to constraints obtained from the cosmic microwave background data or other large scale structure probes.Comment: 38 pages, 21 figures. One section and references added. JCAP in pres

    Reionization and galaxy inference from the high-redshift Ly α forest

    Get PDF
    The transmission of Lyman α (Ly α) in the spectra of distant quasars depends on the density, temperature, and ionization state of the intergalactic medium. Therefore, high-redshift (z &gt; 5) Ly α forests could be invaluable in studying the late stages of the epoch of reionization (EoR), as well as properties of the sources that drive it. Indeed, high-quality quasar spectra have now firmly established the existence of large-scale opacity fluctuations at z &gt; 5, whose physical origins are still debated. Here, we introduce a Bayesian framework capable of constraining the EoR and galaxy properties by forward-modelling the high-z Ly α forest. Using priors from galaxy and cosmic microwave background observations, we demonstrate that the final overlap stages of the EoR (when &gt;95 per cent of the volume was ionized) should occur at z &lt; 5.6, in order to reproduce the large-scale opacity fluctuations seen in forest spectra. However, it is the combination of patchy reionization and the inhomogeneous ultraviolet background that produces the longest Gunn-Peterson troughs. Ly α forest observations tighten existing constraints on the characteristic ionizing escape fraction of galaxies, with the combined observations suggesting fesc ≈ 7+4-3} per cent, and disfavouring a strong evolution with the galaxy's halo (or stellar) mass

    Studying the Warm Hot Intergalactic Medium in emission: a reprise

    Full text link
    The Warm-Hot Intergalactic Medium (WHIM) is believed to host a significant fraction of the ``missing baryons'' in the nearby Universe. Its signature has been detected in the X-ray absorption spectra of distant quasars. However, its detection in emission, that would allow us to study the WHIM in a systematic way, is still lacking. Motivated by the possibility to perform these studies with next generation integral field spectrometers, and thanks to the availability of a large suite of state-of-the-art hydrodynamic simulations -- the CAMELS suite -- we study here in detail the emission properties of the WHIM and the possibility to infer its physical properties with upcoming X-ray missions like Athena. We focused on the two most prominent WHIM emission lines, the OVII triplet and the OVIII singlet, and build line surface brightness maps in a lightcone, mimicking a data cube generated through integral field spectroscopy. We confirm that detectable WHIM emission, even with next generation instruments, is largely associated to galaxy-size dark matter halos and that the WHIM properties evolve little from z≃0.5z\simeq0.5 to now. Some characteristics of the WHIM, like the line number counts as a function of their brightness, depend on the specific hydrodynamic simulation used, while others, like the WHIM clustering properties, are robust to this aspect. The large number of simulations available in the CAMELS datasets allows us to assess the sensitivity of the WHIM properties to the background cosmology and to the energy feedback mechanisms regulated by AGN and stellar activity. [ABRIDGED]Comment: 23 pages, 17 figures, 3 table

    Primordial non-Gaussianities in the intergalactic medium

    Get PDF
    We present results from the first high-resolution hydrodynamical simulations of non-Gaussian cosmological models. We focus on the statistical properties of the transmitted Lyman-\u3b1 flux in the high-redshift intergalactic medium. Imprints of non-Gaussianity are present and are larger at high redshifts. Differences larger than 20 per cent at z > 3 in the flux probability distribution function for high-transmissivity regions (voids) are expected for values of the non-linearity parameter fNL = +/-100 when compared to a standard \u39b cold dark matter cosmology with fNL = 0. We also investigate the one-dimensional flux bispectrum: at the largest scales (corresponding to tens of Mpc), we expect deviations in the flux bispectrum up to 20 per cent at z ~ 4 (for fNL = +/-100), significantly larger than deviations of ~3 per cent in the flux power spectrum. We briefly discuss possible systematic errors that can contaminate the signal. Although challenging, a detection of non-Gaussianities in the interesting regime of scales and redshifts probed by the Lyman-\u3b1 forest could be possible with future data sets
    • 

    corecore