81 research outputs found

    Investigation of conductive thermal control coatings by a contactless method in vacuo

    Get PDF
    A technique for determining the conductance per unit area of thermal control coatings for electrostatically clean spacecraft is described. In order to simulate orbital conditions more closely, current-density-voltage (j-V) curves are obtained by a contactless method in which the paint on an aluminum substrate is the anode of a vacuum diode configuration with a tungsten filament cathode. Conductances per unit area which satisfy the International Sun Earth Explorer (ISEE) requirement were observed on black paints containing carbon and in white and green paints filled with zinc oxide which were fired in order to induce defect conductivity. Because of surface effects and the nonhomogeneous nature of paints, large discrepancies were found between measurements with the contactless method and measurements employing metallic contacts, particularly at low current densities. Therefore, measurements with metallic contacts are considered to be of questionable value in deciding the suitability of coatings for electrostatic charge control

    The Newton stratification on deformations of local G-shtukas

    Full text link
    Bounded local G-shtukas are function field analogs for p-divisible groups with extra structure. We describe their deformations and moduli spaces. The latter are analogous to Rapoport-Zink spaces for p-divisible groups. The underlying schemes of these moduli spaces are affine Deligne-Lusztig varieties. For basic Newton polygons the closed Newton stratum in the universal deformation of a local G-shtuka is isomorphic to the completion of a corresponding affine Deligne-Lusztig variety in that point. This yields bounds on the dimension and proves equidimensionality of the basic affine Deligne-Lusztig varieties.Comment: several improvements, definition of local G-shtuka is change

    Exploring the Effects of Residence Time on the Utility of Stable Isotopes and S/C Ratios as Proxies for Ocean Connectivity

    Get PDF
    Various geochemical proxies have been developed to determine if ancient sedimentary strata were deposited in marine or nonmarine environments. A critical parameter for proxy reliability is the residence time of aqueous species in seawater, which is rarely considered for proxies relying on stable isotopes and elemental abundance ratios. Differences in residence time may affect our ability to track geologically short-lived alternations between marine and nonmarine conditions. To test this effect for sulfur and nitrogen isotopes and sulfur/carbon ratios, we investigated a stratigraphic section in the Miocene Oberpullendorf Basin in Austria. Here, previous work revealed typical seawater-like rare earth element and yttrium (REY) systematics transitioning to nonmarine-like systematics. This shift was interpreted as a brief transition from an open marine depositional setting to a restricted embayment with a reduced level of exchange with the open ocean and possibly freshwater influence. Our isotopic results show no discernible response in carbonate-associated sulfate sulfur isotopes and carbon/sulfur abundance ratios during the interval of marine restriction inferred from the REY data, but nitrogen isotopes show a decrease by several permil. This observation is consistent with the much longer residence time of sulfate in seawater compared with REY and nitrate. Hence, this case study illustrates that the residence time is a key factor for the utility of seawater proxies. In some cases, it may make geochemical parameters more sensitive to marine water influx than paleontological observations, as in the Oberpullendorf Basin. Particular care is warranted in deep time, when marine residence times likely differ markedly from the modern

    Rescaling multipartite entanglement measures for mixed states

    Full text link
    A relevant problem regarding entanglement measures is the following: Given an arbitrary mixed state, how does a measure for multipartite entanglement change if general local operations are applied to the state? This question is nontrivial as the normalization of the states has to be taken into account. Here we answer it for pure-state entanglement measures which are invariant under determinant 1 local operations and homogeneous in the state coefficients, and their convex-roof extension which quantifies mixed-state entanglement. Our analysis allows to enlarge the set of mixed states for which these important measures can be calculated exactly. In particular, our results hint at a distinguished role of entanglement measures which have homogeneous degree 2 in the state coefficients.Comment: Published version plus one important reference (Ref. [39]

    First Simultaneous NIR/X-ray Detection of a Flare from SgrA*

    Full text link
    We report on the first simultaneous near-infrared/X-ray detection of the Sgr A* counterpart which is associated with the massive black hole at the center of the Milky Way. The observations have been carried out using the NACO adaptive optics (AO) instrument at the European Southern Observatory's Very Large Telescope and the ACIS-I instrument aboard the Chandra X-ray Observatory. We also report on quasi-simultaneous observations at a wavelength of 3.4 mm using the Berkeley-Illinois-Maryland Association (BIMA) array. A flare was detected in the X-domain with an excess 2-8 keV luminosity of about 6×1033\times10^{33} erg/s. A fading flare of Sgr A* with >>2 times the interim-quiescent flux was also detected at the beginning of the NIR observations, that overlapped with the fading part of the X-ray flare. Compared to 8-9 hours before the NIR/X-ray flare we detected a marginally significant increase in the millimeter flux density of Sgr A* during measurements about 7-9 hours afterwards. We find that the flaring state can be conveniently explained with a synchrotron self-Compton model involving up-scattered sub-millimeter photons from a compact source component, possibly with modest bulk relativistic motion. The size of that component is assumed to be of the order of a few times the Schwarzschild radius. The overall spectral indices αNIR/Xray\alpha_{NIR/X-ray} (SνS_{\nu}\proptoνα\nu^{-\alpha}) of both states are quite comparable with a value of \sim1.3. Since the interim-quiescent X-ray emission is spatially extended, the spectral index for the interim-quiescent state is probably only a lower limit for the compact source Sgr A*. A conservative estimate of the upper limit of the time lag between the ends of the NIR and X-ray flare is of the order of 15 minutes.Comment: Reviewed version; minor changes; added quasi-simultaneous submm observation

    Ambient air pollution and thrombosis

    Get PDF
    Abstract Air pollution is a growing public health concern of global significance. Acute and chronic exposure is known to impair cardiovascular function, exacerbate disease and increase cardiovascular mortality. Several plausible biological mechanisms have been proposed for these associations, however, at present, the pathways are incomplete. A seminal review by the American Heart Association (2010) concluded that the thrombotic effects of particulate air pollution likely contributed to their effects on cardiovascular mortality and morbidity. The aim of the current review is to appraise the newly accumulated scientific evidence (2009–2016) on contribution of haemostasis and thrombosis towards cardiovascular disease induced by exposure to both particulate and gaseous pollutants. Seventy four publications were reviewed in-depth. The weight of evidence suggests that acute exposure to fine particulate matter (PM2.5) induces a shift in the haemostatic balance towards a pro-thrombotic/pro-coagulative state. Insufficient data was available to ascertain if a similar relationship exists for gaseous pollutants, and very few studies have addressed long-term exposure to ambient air pollution. Platelet activation, oxidative stress, interplay between interleukin-6 and tissue factor, all appear to be potentially important mechanisms in pollution-mediated thrombosis, together with an emerging role for circulating microvesicles and epigenetic changes. Overall, the recent literature supports, and arguably strengthens, the contention that air pollution contributes to cardiovascular morbidity by promoting haemostasis. The volume and diversity of the evidence highlights the complexity of the pathophysiologic mechanisms by which air pollution promotes thrombosis; multiple pathways are plausible and it is most likely they act in concert. Future research should address the role gaseous pollutants play in the cardiovascular effects of air pollution mixture and direct comparison of potentially susceptible groups to healthy individuals

    The dimension of some affine Deligne–Lusztig varieties

    No full text
    corecore