45 research outputs found

    Techno-economic assessment of CO2 quality effect on its storage and transport: CO2QUEST: An overview of aims, objectives and main findings

    Get PDF
    This paper provides an overview of the aims, objectives and the main findings of the CO2QUEST FP7 collaborative project, funded by the European Commission and designed to address the fundamentally important and urgent issues regarding the impact of the typical impurities in CO2 streams captured from fossil fuel power plants and other CO2 intensive industries on their safe and economic pipeline transportation and storage. The main features and results recorded from some of the unique test facilities constructed as part of the project are presented. These include an extensively instrumented realistic-scale test pipeline for conducting pipeline rupture and dispersion tests in China, an injection test facility in France to study the mobility of trace metallic elements contained in a CO2 stream following injection near a shallow-water qualifier and fluid/rock interactions and well integrity experiments conducted using a fully instrumented deep-well CO2/impurities injection test facility in Israel. The above, along with the various unique mathematical models developed, provide the fundamentally important tools needed to define impurity tolerance levels, mixing protocols and control measures for pipeline networks and storage infrastructure, thus contributing to the development of relevant standards for the safe design and economic operation of CCS

    Vasa-Like DEAD-Box RNA Helicases of Schistosoma mansoni

    Get PDF
    Genome sequences are available for the human blood flukes, Schistosoma japonicum, S. mansoni and S. haematobium. Functional genomic approaches could aid in identifying the role and importance of these newly described schistosome genes. Transgenesis is established for functional genomics in model species, which can lead to gain- or loss-of-functions, facilitate vector-based RNA interference, and represents an effective forward genetics tool for insertional mutagenesis screens. Progress toward routine transgenesis in schistosomes might be expedited if germ cells could be reliably localized in cultured schistosomes. Vasa, a member of the ATP-dependent DEAD-box RNA helicase family, is a prototypic marker of primordial germ cells and the germ line in the Metazoa. Using bioinformatics, 33 putative DEAD-box RNA helicases exhibiting conserved motifs that characterize helicases of this family were identified in the S. mansoni genome. Moreover, three of the helicases exhibited vasa-like sequences; phylogenetic analysis confirmed the three vasa-like genes—termed Smvlg1, Smvlg2, and Smvlg3—were members of the Vasa/PL10 DEAD-box subfamily. Transcripts encoding Smvlg1, Smvlg2, and Smvlg3 were cloned from cDNAs from mixed sex adult worms, and quantitative real time PCR revealed their presence in developmental stages of S. mansoni with elevated expression in sporocysts, adult females, eggs, and miracidia, with strikingly high expression in the undeveloped egg. Whole mount in situ hybridization (WISH) analysis revealed that Smvlg1, Smvlg2 and Smvlg3 were transcribed in the posterior ovary where the oocytes mature. Germ cell specific expression of schistosome vasa-like genes should provide an informative landmark for germ line transgenesis of schistosomes, etiologic agents of major neglected tropical diseases

    Cleavage modification did not alter blastomere fates during bryozoan evolution

    Get PDF
    This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.The study was funded by the core budget of the Sars Centre and by The European Research Council Community’s Framework Program Horizon 2020 (2014–2020) ERC grant agreement 648861 to A

    Latent regeneration abilities persist following recent evolutionary loss in asexual annelids

    No full text
    Regeneration abilities have been repeatedly lost in many animal phyla. However, because regeneration research has focused almost exclusively on highly regenerative taxa or on comparisons between regenerating and nonregenerating taxa that are deeply diverged, virtually nothing is known about how regeneration loss occurs. Here, we show that, following a recent evolutionary loss of regeneration, regenerative abilities can remain latent and still be elicited. Using comparative regeneration experiments and a molecular phylogeny, we show that ancestral head regeneration abilities have been lost three times among naidine annelids, a group of small aquatic worms that typically reproduce asexually by fission. In all three lineages incapable of head regeneration, worms consistently seal the wound but fail to progress to the first stage of tissue replacement. However, despite this coarse-level convergence in regeneration loss, further investigation of two of these lineages reveals marked differences in how much of the regeneration machinery has been abolished. Most notably, in a species representing one of these two lineages, but not in a representative of the other, amputation within a narrow proliferative region that forms during fission can still elicit regeneration of an essentially normal head. Thus, the presence at the wound site of elements characteristic of actively growing tissues, such as activated stem cells or growth factors, may permit blocks to regeneration to be circumvented, allowing latent regeneration abilities to be manifested
    corecore