52 research outputs found

    Spatial Resolution of a Micromegas-TPC Using the Charge Dispersion Signal

    Full text link
    The Time Projection Chamber (TPC) for the International Linear Collider will need to measure about 200 track points with a resolution close to 100 μ\mum. A Micro Pattern Gas Detector (MPGD) readout TPC could achieve the desired resolution with existing techniques using sub-millimeter width pads at the expense of a large increase in the detector cost and complexity. We have recently applied a new MPGD readout concept of charge dispersion to a prototype GEM-TPC and demonstrated the feasibility of achieving good resolution with pads similar in width to the ones used for the proportional wire TPC. The charge dispersion studies were repeated with a Micromegas TPC amplification stage. We present here our first results on the Micromegas-TPC resolution with charge dispersion. The TPC resolution with the Micromegas readout is compared to our earlier GEM results and to the resolution expected from electron statistics and transverse diffusion in a gaseous TPC.Comment: 5 pages, 8 figures, to appar in the Proceedings of the 2005 International Linear Collider Workshop (LCWS05), Stanford, 18-22 March 200

    Modeled larval connectivity of a multi-species reef fish and invertebrate assemblage off the coast of Moloka‘i, Hawai‘i

    Get PDF
    We use a novel individual-based model (IBM) to simulate larval dispersal around the island of Moloka‘i in the Hawaiian Archipelago. Our model uses ocean current output from the Massachusetts Institute of Technology general circulation model (MITgcm) as well as biological data on four invertebrate and seven fish species of management relevance to produce connectivity maps among sites around the island of Moloka‘i. These 11 species span the range of life history characteristics of Hawaiian coral reef species and show different spatial and temporal patterns of connectivity as a result. As expected, the longer the pelagic larval duration (PLD), the greater the proportion of larvae that disperse longer distances, but regardless of PLD (3–270 d) most successful dispersal occurs either over short distances within an island (<30 km) or to adjacent islands (50–125 km). Again, regardless of PLD, around the island of Moloka‘i, connectivity tends to be greatest among sites along the same coastline and exchange between northward, southward, eastward and westward-facing shores is limited. Using a graph-theoretic approach to visualize the data, we highlight that the eastern side of the island tends to show the greatest out-degree and betweenness centrality, which indicate important larval sources and connectivity pathways for the rest of the island. The marine protected area surrounding Kalaupapa National Historical Park emerges as a potential source for between-island larval connections, and the west coast of the Park is one of the few regions on Moloka‘i that acts as a net larval source across all species. Using this IBM and visualization approach reveals patterns of exchange between habitat regions and highlights critical larval sources and multi-generational pathways to indicate priority areas for marine resource managers

    Evidence of Segregated Spawning in a Single Marine Fish Stock: Sympatric Divergence of Ecotypes in Icelandic Cod?

    Get PDF
    There is increasing recognition of intraspecific diversity and population structure within marine fish species, yet there is little direct evidence of the isolating mechanisms that maintain it or documentation of its ecological extent. We analyzed depth and temperature histories collected by electronic data storage tags retrieved from 104 Atlantic cod at liberty ≥1 year to evaluate a possible isolating mechanisms maintaining population structure within the Icelandic cod stock. This stock consists of two distinct behavioral types, resident coastal cod and migratory frontal cod, each occurring within two geographically distinct populations. Despite being captured together on the same spawning grounds, we show the behavioral types seem reproductively isolated by fine-scale differences in spawning habitat selection, primarily depth. Additionally, the different groups occupied distinct seasonal thermal and bathymetric niches that generally demonstrated low levels of overlap throughout the year. Our results indicate that isolating mechanisms, such as differential habitat selection during spawning, might contribute to maintaining diversity and fine-scale population structure in broadcast-spawning marine fishes

    Marine fish traits follow fast-slow continuum across oceans

    Get PDF
    A fundamental challenge in ecology is to understand why species are found where they are and predict where they are likely to occur in the future. Trait-based approaches may provide such understanding, because it is the traits and adaptations of species that determine which environments they can inhabit. It is therefore important to identify key traits that determine species distributions and investigate how these traits relate to the environment. Based on scientific bottom-trawl surveys of marine fish abundances and traits of >1,200 species, we investigate trait-environment relationships and project the trait composition of marine fish communities across the continental shelf seas of the Northern hemisphere. We show that traits related to growth, maturation and lifespan respond most strongly to the environment. This is reflected by a pronounced “fast-slow continuum” of fish life-histories, revealing that traits vary with temperature at large spatial scales, but also with depth and seasonality at more local scales. Our findings provide insight into the structure of marine fish communities and suggest that global warming will favour an expansion of fast-living species. Knowledge of the global and local drivers of trait distributions can thus be used to predict future responses of fish communities to environmental change.Postprint2,92

    Effects of fishery protection on biometry and genetic structure of two target sea cucumber species from the Mediterranean Sea

    Get PDF
    Sea cucumber fisheries are now occurring in most of the tropical areas of the world, having expanded from its origin in the central Indo-Pacific. Due to the overexploitation of these resources and the increasing demand from Asian countries, new target species from Mediterranean Sea and northeastern Atlantic Ocean are being caught. The fishery effects on biometry and genetic structure of two target species (Holothuria polii and H. tubulosa) from Turkey, were assessed. The heaviest and largest individuals of H. polii were found into the non-fishery area of Kusadasi, also showing the highest genetic diversity. Similar pattern was detected in H. tubulosa, but only the weight was significantly higher in the protected area. However, the observed differences on the fishery effects between species, could be explained considering the different percentage of catches (80% for H. polii and 20% for H. tubulosa)

    ATLAS detector and physics performance: Technical Design Report, 1

    Get PDF

    Combination of genetics and spatial modelling highlights the sensitivity of cod (Gadus morhua) population diversity in the North Sea to distributions of fishing

    Get PDF
    Conserving genetic diversity in animal populations is important for sustaining their ability to respond to environmental change. However, the ‘between-population’ component of genetic diversity (biocomplexity) is threatened in many exploited populations, particularly marine fish, where harvest management regions may be larger than the spatial extent of genetically distinct sub-populations. Using single nucleotide polymorphism (SNP) data we delineated the geographic limits of three population units of Atlantic cod (Gadus morhua) in northwest European waters. Two of the populations co-habit the North Sea, and trawl survey data showed differing trends in their abundances. We developed a spatial model of these units to simulate population dynamics under spatial patterns of harvesting, Competition between units during the pelagic juvenile stages in the model led to suppression of the more localised northern North Sea (Viking) unit by the more widespread (Dogger) unit, and its premature extinction under some spatial patterns of fishing. Fishery catch limits for cod are set at the scale of the whole North Sea without regard to such sub-population dynamics. Our model offers a method to quantify adjustments to regional fishing mortality rates to strike a balance between maximising sustainable yield and conserving vulnerable populations

    Ontogenetic spatial constraints of sub-arctic marine fish species

    No full text
    Marine species may respond and adapt to climate change through shifting spatial distributions, but options may be limited by the occupancy of essential habitats which are anchored in space. Limited knowledge of when spatial constraints are most likely to occur in marine fish life cycles has impeded the development of realistic distribution forecasts. In this study, we develop and implement analytical techniques to identify spatial constraints, defined by both the consistency through which a particular geographic area is used year after year, and by the extent of such area with respect to the entire population range. This approach is applied to simulated data and to ten case-studies including six groundfish species from three subarctic marine systems. Our analyses illustrate that the early phase of the species’ life cycle is more spatially constrained than older life stages. We detected significant species-specific variability in both the degree to which species are anchored in space throughout their life cycle, and the ontogenetic changes in the geographic association. There is an indication that this variability can be explained by the species life history strategy, highlighting the need to extend similar analyses to other species and regions. The presence of ontogenetic spatial constraints, particularly during early life stages, indicates restrictions exist to changes in spatial distribution and questions the assertion that global warming will uniformly result in an increase in abundance and harvest at higher latitudes and decreases at lower latitudes. Our study develops ecological and analytical insights that are critical for accurate projections of species distributions under different climate change scenarios
    corecore