5,503 research outputs found

    Billion-atom Synchronous Parallel Kinetic Monte Carlo Simulations of Critical 3D Ising Systems

    Full text link
    An extension of the synchronous parallel kinetic Monte Carlo (pkMC) algorithm developed by Martinez {\it et al} [{\it J.\ Comp.\ Phys.} {\bf 227} (2008) 3804] to discrete lattices is presented. The method solves the master equation synchronously by recourse to null events that keep all processors time clocks current in a global sense. Boundary conflicts are rigorously solved by adopting a chessboard decomposition into non-interacting sublattices. We find that the bias introduced by the spatial correlations attendant to the sublattice decomposition is within the standard deviation of the serial method, which confirms the statistical validity of the method. We have assessed the parallel efficiency of the method and find that our algorithm scales consistently with problem size and sublattice partition. We apply the method to the calculation of scale-dependent critical exponents in billion-atom 3D Ising systems, with very good agreement with state-of-the-art multispin simulations

    Superconductivity Near Ferromagnetism in MgCNi3

    Full text link
    An unusual quasi-two-dimensional heavy band mass van Hove singularity (vHs) lies very near the Fermi energy in MgCNi3, recently reported to superconduct at 8.5 K. This compound is strongly exchange enhanced and is unstable to ferromagnetism upon hole doping with 12% Mg --> Na or Li. The 1/4-depleted fcc (frustrated) Ni sublattice and lack of Fermi surface nesting argues against competing antiferromagnetic and charge density wave instabilities. We identify an essentially infinite mass along the M-Gamma line, leading to quasi-two-dimensionality of this vHs may promote unconventional p-wave pairing that could coexist with superconductivity.Comment: 4 two-column pages, 4 figure

    Decoherence window and electron-nuclear cross-relaxation in the molecular magnet V 15

    Full text link
    Rabi oscillations in the V_15 Single Molecule Magnet (SMM) embedded in the surfactant DODA have been studied at different microwave powers. An intense damping peak is observed when the Rabi frequency Omega_R falls in the vicinity of the Larmor frequency of protons w_N, while the damping time t_R of oscillations reaches values 10 times shorter than the phase coherence time t_2 measured at the same temperature. The experiments are interpreted by the N-spin model showing that t_R is directly associated with the decoherence via electronic/nuclear spin cross-relaxation in the rotating reference frame. It is shown that this decoherence is accompanied with energy dissipation in the range of the Rabi frequencies w_N - sigma_e < Omega_R < w_N, where sigma_e is the mean super-hyperfine field (in frequency units) induced by protons at SMMs. Weaker damping without dissipation takes place outside this dissipation window. Simple local field estimations suggest that this rapid cross-relaxation in resonant microwave field observed for the first time in SMMV_15 should take place in other SMMs like Fe_8 and Mn_12 containing protons, too

    Intercontinental transport of pollution manifested in the variability and seasonal trend of springtime O3 at northern middle and high latitudes

    Get PDF
    Observations (0–8 km) from the Tropospheric Ozone Production about the Spring Equinox (TOPSE) experiment are analyzed to examine air masses contributing to the observed variability of springtime O3 and its seasonal increase at 40°–85°N over North America. Factor analysis using the positive matrix factorization and principal component analysis methods is applied to the data set with 14 chemical tracers (O3, NOy, PAN, CO, CH4, C2H2, C3H8, CH3Cl, CH3Br, C2Cl4, CFC-11, HCFC-141B, Halon-1211, and 7Be) and one dynamic tracer (potential temperature). Our analysis results are biased by the measurements at 5–8 km (70% of the data) due to the availability of 7Be measurements. The identified tracer characteristics for seven factors are generally consistent with the geographical origins derived from their 10 day back trajectories. Stratospherically influenced air accounts for 14 ppbv (35–40%) of the observed O3 variability for data with O3concentrations \u3c100 ppbv at middle and high latitudes. It accounts for about 2.5 ppbv/month (40%) of the seasonal O3 trend at midlatitudes but for only 0.8 ppbv/month (\u3c20%) at high latitudes, likely reflecting more vigorous midlatitude dynamical systems in spring. At midlatitudes, reactive nitrogen-rich air masses transported through Asia are much more significant (11 ppbv in variability and 3.5 ppbv/month in trend) than other tropospheric contributors. At high latitudes the O3 variability is significantly influenced by air masses transported from lower latitudes (11 ppbv), which are poor in reactive nitrogen. The O3 trend, in contrast, is largely defined by air masses rich in reactive nitrogen transported through Asia and Europe across the Pacific or the Arctic (3 ppbv/month). The influence from the stratospheric source is more apparent at 6–8 km, while the effect of O3 production and transport within the troposphere is more apparent at lower altitudes. The overall effect of tropospheric photochemical production, through long-range transport, on the observed O3 variability and its seasonal trend is more important at high latitudes relative to more photochemically active midlatitudes

    Experimental and theoretical investigation of phosphorus in-situ doping of germanium epitaxial layers

    Get PDF
    Cataloged from PDF version of article.We investigate phosphorus in-situ doping characteristics in germanium (Ge) during epitaxial growth by spreading resistance profiling analysis. In addition, we present an accurate model for the kinetics of the diffusion in the in-situ process, modeling combined growth and diffusion events. The activation energy and pre-exponential factor for phosphorus (P) diffusion are determined to be 1.91 eV and 3.75 x 10(-5) cm(2)/s. These results show that P in-situ doping diffusivity is low enough to form shallow junctions for high performance Ge devices. (C) 2013 Elsevier B.V. All rights reserve

    Photoemission and x-ray absorption study of MgC_(1-x)Ni_3

    Full text link
    We investigated electronic structure of MgC_(1-x)Ni_3 with photoemission and x-ray absorption spectroscopy. Both results show that overall band structure is in reasonable agreement with band structure calculations including the existence of von Hove singularity (vHs)near E_F. However, we find that the sharp vHs peak theoretically predicted near the E_F is substantially suppressed. As for the Ni core level and absorption spectrum, there exist the satellites of Ni 2p which have a little larger energy separation and reduced intensity compared to the case of Ni-metal. These facts indicate that correlation effects among Ni 3d electrons may be important to understand various physical properties.Comment: 12 pages, 4 figure

    Effect of Randomness on Quantum Data Buses of Heisenberg Spin Chains

    Full text link
    A strongly coupled spin chain can mediate long-distance effective couplings or entanglement between remote qubits, and can be used as a quantum data bus. We study how the fidelity of a spin-1/2 Heisenberg chain as a spin bus is affected by static random exchange couplings and magnetic fields. We find that, while non-uniform exchange couplings preserve the isotropy of the qubit effective couplings, they cause the energy levels, the eigenstates, and the magnitude of the couplings to vary locally. On the other hand, random local magnetic fields lead to an avoided level crossing for the bus ground state manifold, and cause the effective qubit couplings to be anisotropic. Interestingly, the total magnetic moment of the ground state of an odd-size bus may not be parallel to the average magnetic field. Its alignment depends on both the direction of the average field and the field distribution, in contrast with the ground state of a single spin which always aligns with the applied magnetic field to minimize the Zeeman energy. Lastly, we calculate sensitivities of the spin bus to such local variations, which are potentially useful for evaluating decoherence when dynamical fluctuations in the exchange coupling or magnetic field are considered
    • …
    corecore