224 research outputs found

    Overscreened multi-channel SU(N) Kondo model : large-N solution and Conformal Field Theory

    Full text link
    The multichannel Kondo model with SU(N) spin symmetry and SU(K) channel symmetry is considered. The impurity spin is chosen to transform as an antisymmetric representation of SU(N), corresponding to a fixed number of Abrikosov fermions αfαfα=Q\sum_{\alpha}f_{\alpha}^{\dagger}f_{\alpha}=Q. For more than one channel (K>1), and all values of N and Q, the model displays non-Fermi behaviour associated with the overscreening of the impurity spin. Universal low-temperature thermodynamic and transport properties of this non-Fermi liquid state are computed using conformal field theory methods. A large-N limit of the model is then considered, in which K/N and Q/N are held fixed. Spectral densities satisfy coupled integral equations in this limit, corresponding to a (time-dependent) saddle-point. A low frequency, low-temperature analysis of these equations reveals universal scaling properties in the variable ω/T\omega/T, also predicted from conformal invariance. The universal scaling form is obtained analytically and used to compute the low-temperature universal properties of the model in the large-N limit, such as the T=0 residual entropy and residual resistivity, and the critical exponents associated with the specific heat and susceptibility. The connections with the ``non-crossing approximation'' and the previous work of Cox and Ruckenstein are discussed.Comment: 39 pages, RevTeX, including 5 figures in encapsulated postscript forma

    3ARM: A Fast, Accurate Radiative Transfer Model for use in Climate Models

    Get PDF
    A new radiative transfer model combining the efforts of three groups of researchers is discussed. The model accurately computes radiative transfer in a inhomogeneous absorbing, scattering and emitting atmospheres. As an illustration of the model, results are shown for the effects of dust on the thermal radiation

    Radiative forcing of carbon dioxide, methane, and nitrous oxide: a significant revision of the methane radiative forcing

    Get PDF
    New calculations of the radiative forcing (RF) are presented for the three main well‐mixed greenhouse gases, methane, nitrous oxide, and carbon dioxide. Methane’s RF is particularly impacted because of the inclusion of the shortwave forcing; the 1750–2011 RF is about 25% higher (increasing from 0.48 W m−2 to 0.61 W m−2) compared to the value in the Intergovernmental Panel on Climate Change (IPCC) 2013 assessment; the 100 year global warming potential is 14% higher than the IPCC value. We present new simplified expressions to calculate RF. Unlike previous expressions used by IPCC, the new ones include the overlap between CO2 and N2O; for N2O forcing, the CO2 overlap can be as important as the CH4 overlap. The 1750–2011 CO2 RF is within 1% of IPCC’s value but is about 10% higher when CO2 amounts reach 2000 ppm, a value projected to be possible under the extended RCP8.5 scenario

    Atmospheric gas absorption knowledge in the submillimeter: Modeling, field measurements, and uncertainty quantification

    Get PDF
    Members of the atmospheric and astronomical science communities met to review the current state of the art of the submillimeter spectral region. Knowledge of gas spectroscopy is still questionable at these frequencies but is important to fully exploit upcoming meteorological satellite measurements

    The Performance of Current Atmospheric Radiation Codes in Phase I of CIRC

    Get PDF
    The Continual Intercomparison of Radiation Codes (CIRC) is intended as an evolving and regularly updated reference source for evaluation of radiative transfer (RT) codes used in Global Climate Models and other atmospheric applications. In our presentation we will discuss our evaluation of the performance of 13 shortwave and 11 longwave RT codes that participated in Phase I of CIRC. CIRC differs from previous intercomparisons in that it relies on an observationally validated catalogue of cases. The seven CIRC Phase I baseline cases, five cloud-free, and two with overcast liquid clouds, are built around observations by the Atmospheric Radiation Measurements (ARM) program that satisfy the goals .of Phase I, namely to examine RT model performance in realistic, yet not overly complex, atmospheric conditions. Besides the seven baseline cases, additional idealized "subcases" are also examined to facilitate interpretation of model errors. We will quantify individual model performance with respect to reference line-by-line calculations, and will also highlight RT code behavior for conditions of doubled CO2 , aspects of utilizing a spectral specification of surface albedo, and the impact of the inclusion of scattering in the thermal infrared. Our analysis suggests that RT codes should work towards improving their calculation of diffuse shortwave flux, shortwave absorption, treatment of spectral surface albedo, and shortwave CO2 forcing. Despite practical difficulties in comparing our results to previous results by the Intercomparison of Radiation Codes in Climate Models (ICRCCM) conducted about 20 years ago, it appears that the current generation of RT codes do indeed perform better than the codes of the ICRCCM era. By enhancing the range of conditions under which participating codes are tested, future CIRC phases will hopefully allow even more rigorous examination of RT code performance

    Radiative Flux and Forcing Parameterization Error in Aerosol-Free Clear Skies

    Get PDF
    This article reports on the accuracy in aerosol- and cloud-free conditions of the radiation parameterizations used in climate models. Accuracy is assessed relative to observationally validated reference models for fluxes under present-day conditions and forcing (flux changes) from quadrupled concentrations of carbon dioxide. Agreement among reference models is typically within 1 W/m2, while parameterized calculations are roughly half as accurate in the longwave and even less accurate, and more variable, in the shortwave. Absorption of shortwave radiation is underestimated by most parameterizations in the present day and has relatively large errors in forcing. Error in present-day conditions is essentially unrelated to error in forcing calculations. Recent revisions to parameterizations have reduced error in most cases. A dependence on atmospheric conditions, including integrated water vapor, means that global estimates of parameterization error relevant for the radiative forcing of climate change will require much more ambitious calculations

    The HITRAN2020 Molecular Spectroscopic Database

    Get PDF
    The HITRAN database is a compilation of molecular spectroscopic parameters. It was established in the early 1970s and is used by various computer codes to predict and simulate the transmission and emission of light in gaseous media (with an emphasis on terrestrial and planetary atmospheres). The HITRAN compilation is composed of five major components: the line-by-line spectroscopic parameters required for high-resolution radiative-transfer codes, experimental infrared absorption cross-sections (for molecules where it is not yet feasible for representation in a line-by-line form), collision-induced absorption data, aerosol indices of refraction, and general tables (including partition sums) that apply globally to the data. This paper describes the contents of the 2020 quadrennial edition of HITRAN. The HITRAN2020 edition takes advantage of recent experimental and theoretical data that were meticulously validated, in particular, against laboratory and atmospheric spectra. The new edition replaces the previous HITRAN edition of 2016 (including its updates during the intervening years). All five components of HITRAN have undergone major updates. In particular, the extent of the updates in the HITRAN2020 edition range from updating a few lines of specific molecules to complete replacements of the lists, and also the introduction of additional isotopologues and new (to HITRAN) molecules: SO, CH3F, GeH4, CS2, CH3I and NF3. Many new vibrational bands were added, extending the spectral coverage and completeness of the line lists. Also, the accuracy of the parameters for major atmospheric absorbers has been increased substantially, often featuring sub-percent uncertainties. Broadening parameters associated with the ambient pressure of water vapor were introduced to HITRAN for the first time and are now available for several molecules. The HITRAN2020 edition continues to take advantage of the relational structure and efficient interface available at www.hitran.org and the HITRAN Application Programming Interface (HAPI). The functionality of both tools has been extended for the new edition

    Lateral terrestrial water flow contribution to summer precipitation at continental scale – A comparison between Europe and West Africa with WRF‐Hydro‐tag ensembles

    Get PDF
    It is well accepted that summer precipitation can be altered by soil moisture condition. Coupled land surface – atmospheric models have been routinely used to quantify soil moisture – precipitation feedback processes. However, most of the land surface models (LSMs) assume a vertical soil water transport and neglect lateral terrestrial water flow at the surface and in the subsurface, which potentially reduces the realism of the simulated soil moisture – precipitation feedback. In this study, the contribution of lateral terrestrial water flow to summer precipitation is assessed in two different climatic regions, Europe and West Africa, for the period June–September 2008. A version of the coupled atmospheric-hydrological model WRF-Hydro with an option to tag and trace land surface evaporation in the modelled atmosphere, named WRF-Hydro-tag, is employed. An ensemble of 30 simulations with terrestrial routing and 30 simulations without terrestrial routing is generated with random realizations of turbulent energy with the stochastic kinetic energy backscatter scheme, for both Europe and West Africa. The ensemble size allows to extract random noise from continental-scale averaged modelled precipitation. It is found that lateral terrestrial water flow increases the relative contribution of land surface evaporation to precipitation by 3.6% in Europe and 5.6% in West Africa, which enhances a positive soil moisture – precipitation feedback and generates more uncertainty in modelled precipitation, as diagnosed by a slight increase in normalized ensemble spread. This study demonstrates the small but non-negligible contribution of lateral terrestrial water flow to precipitation at continental scale

    Chern-Simons-matter dualities with SO and USp gauge groups

    Get PDF
    In the last few years several dualities were found between the low-energy behaviors of Chern-Simons-matter theories with unitary gauge groups coupled to scalars, and similar theories coupled to fermions. In this paper we generalize those dualities to orthogonal and symplectic gauge groups. In particular, we conjecture dualities between SO(N)kChern-Simons theories coupled to Nfreal scalars in the fundamental representation, and SO(k)\u2013N + N f / 2theories coupled to Nfreal (Majorana) fermions in the fundamental. For Nf= 0 these are just level-rank dualities of pure Chern-Simons theories, whose precise form we clarify. They lead us to propose new gapped boundary states of topological insulators and superconductors. For k = 1 we get an interesting low-energy duality between Nffree Majorana fermions and an SO(N)1 Chern-Simons theory coupled to Nfscalar fields (with Nf 64 N 12 2)

    Warm‐air advection, air mass transformation and fog causes rapid ice melt

    Get PDF
    Direct observations during intense warm-air advection over the East Siberian Sea reveal a period of rapid sea-ice melt. A semi-stationary, high-pressure system north of the Bering Strait forced northward advection of warm, moist air from the continent. Air-mass transfor-mation over melting sea ice formed a strong, surface-based temperature inversion in which dense fog formed. This induced a positive net longwave radiation at the surface, while reduc-ing net solar radiation only marginally; the inversion also resulted in downward turbulent heat flux. The sum of these processes enhanced the surface energy flux by an average of ~15 W m-2 for a week. Satellite images before and after the episode show sea-ice concentrations decreasing from > 90% to ~50% over a large area affected by the air-mass transformation. We argue that this rapid melt was triggered by the increased heat flux from the atmosphere due to the warm-air advection
    corecore