344 research outputs found

    On the connection between the intergalactic medium and galaxies: the H I–galaxy cross-correlation at z ≲ 1

    Get PDF
    We present a new optical spectroscopic survey of 1777 ‘star-forming’ (‘SF’) and 366 ‘non-star-forming’ (‘non-SF’) galaxies at redshifts z ∼ 0-1 (2143 in total), 22 AGN and 423 stars, observed by instruments such as the Deep Imaging Multi-Object Spectrograph, the Visible Multi-Object Spectrograph and the Gemini Multi-Object Spectrograph, in three fields containing five quasi-stellar objects (QSOs) with Hubble Space Telescope (HST) ultraviolet spectroscopy. We also present a new spectroscopic survey of 173 ‘strong’ (1014 ≤ NHI≲ 1017 cm−2) and 496 ‘weak’ (1013 ≲ NHI 50 per cent of ‘weak’ H i systems reside within galaxy voids (hence not correlated with galaxies), and are confined in dark matter haloes of masses smaller than those hosting ‘strong’ systems and/or galaxies. We speculate that H i systems within galaxy voids might still be evolving in the linear regime even at scales ≲2 Mpc

    Gas Accretion via Lyman Limit Systems

    Full text link
    In cosmological simulations, a large fraction of the partial Lyman limit systems (pLLSs; 16<log N(HI)<17.2) and LLSs (17.2log N(HI)<19) probes large-scale flows in and out of galaxies through their circumgalactic medium (CGM). The overall low metallicity of the cold gaseous streams feeding galaxies seen in these simulations is the key to differentiating them from metal rich gas that is either outflowing or being recycled. In recent years, several groups have empirically determined an entirely new wealth of information on the pLLSs and LLSs over a wide range of redshifts. A major focus of the recent research has been to empirically determine the metallicity distribution of the gas probed by pLLSs and LLSs in sizable and representative samples at both low (z2) redshifts. Here I discuss unambiguous evidence for metal-poor gas at all z probed by the pLLSs and LLSs. At z<1, all the pLLSs and LLSs so far studied are located in the CGM of galaxies with projected distances <100-200 kpc. Regardless of the exact origin of the low-metallicity pLLSs/LLSs, there is a significant mass of cool, dense, low-metallicity gas in the CGM that may be available as fuel for continuing star formation in galaxies over cosmic time. As such, the metal-poor pLLSs and LLSs are currently among the best observational evidence of cold, metal-poor gas accretion onto galaxies.Comment: Invited review to appear in Gas Accretion onto Galaxies, Astrophysics and Space Science Library, eds. A. J. Fox & R. Dav\'e, to be published by Springe

    An Introduction to Gas Accretion onto Galaxies

    Full text link
    Evidence for gas accretion onto galaxies can be found throughout the universe. In this chapter, I summarize the direct and indirect signatures of this process and discuss the primary sources. The evidence for gas accretion includes the star formation rates and metallicities of galaxies, the evolution of the cold gas content of the universe with time, numerous indirect indicators for individual galaxies, and a few direct detections of inflow. The primary sources of gas accretion are the intergalactic medium, satellite gas and feedback material. There is support for each of these sources from observations and simulations, but the methods with which the fuel ultimately settles in to form stars remain murky.Comment: 14 pages, 5 figures, Invited review to appear in Gas Accretion onto Galaxies, Astrophysics and Space Science Library, eds. A. J. Fox & R. Dav\'e, to be published by Springe

    Gas Accretion in Star-Forming Galaxies

    Full text link
    Cold-mode gas accretion onto galaxies is a direct prediction of LCDM simulations and provides galaxies with fuel that allows them to continue to form stars over the lifetime of the Universe. Given its dramatic influence on a galaxy's gas reservoir, gas accretion has to be largely responsible for how galaxies form and evolve. Therefore, given the importance of gas accretion, it is necessary to observe and quantify how these gas flows affect galaxy evolution. However, observational data have yet to conclusively show that gas accretion ubiquitously occurs at any epoch. Directly detecting gas accretion is a challenging endeavor and we now have obtained a significant amount of observational evidence to support it. This chapter reviews the current observational evidence of gas accretion onto star-forming galaxies.Comment: Invited review to appear in Gas Accretion onto Galaxies, Astrophysics and Space Science Library, eds. A. J. Fox & R. Dav\'e, to be published by Springer. This chapter includes 22 pages with 7 Figure

    The Circumgalactic Medium in Massive Halos

    Full text link
    This chapter presents a review of the current state of knowledge on the cool (T ~ 1e4 K) halo gas content around massive galaxies at z ~ 0.2-2. Over the last decade, significant progress has been made in characterizing the cool circumgalactic gas in massive halos of Mh ~ 1e12-1e14 Msun at intermediate redshifts using absorption spectroscopy. Systematic studies of halo gas around massive galaxies beyond the nearby universe are made possible by large spectroscopic samples of galaxies and quasars in public archives. In addition to accurate and precise constraints for the incidence of cool gas in massive halos, detailed characterizations of gas kinematics and chemical compositions around massive quiescent galaxies at z ~ 0.5 have also been obtained. Combining all available measurements shows that infalling clouds from external sources are likely the primary source of cool gas detected at d >~ 100 kpc from massive quiescent galaxies. The origin of the gas closer in is currently less certain, but SNe Ia driven winds appear to contribute significantly to cool gas found at d < 100 kpc. In contrast, cool gas observed at d <~ 200 kpc from luminous quasars appears to be intimately connected to quasar activities on parsec scales. The observed strong correlation between cool gas covering fraction in quasar host halos and quasar bolometric luminosity remains a puzzle. Combining absorption-line studies with spatially-resolved emission measurements of both gas and galaxies is the necessary next step to address remaining questions.Comment: 29 pages, 7 figures, invited review to appear in "Gas Accretion onto Galaxies", Astrophysics and Space Science Library, eds. A. Fox & R. Dave, to be published by Springe

    Time variation of the fine structure constant in the early universe and the Bekenstein model

    Get PDF
    We calculate bounds on the variation of the fine structure constant at the time of primordial nucleosynthesis and at the time of neutral hydrogen formation. We use these bounds and other bounds from the late universe to test Bekenstein model. We modify the Kawano code, CAMB and CosmoMC in order to include the possible variation of the fine structure constant. We use observational primordial abundances of \De, \He and \Li, recent data from the Cosmic Microwave Background and the 2dFGRS power spectrum, to obtain bounds on the variation of α\alpha. We calculate a piecewise solution to the scalar field equation of Bekenstein model in two different regimes; i) matter and radiation, ii) matter and cosmological constant. We match both solutions with appropriate boundary conditions. We perform a statistical analysis using the bounds obtained from the early universe and other bounds from the late universe to constrain the free parameters of the model. Results are consistent with no variation of α\alpha in the early universe. Limits on α\alpha are inconsistent with the scale length of the theory ll being larger than Planck scale. In order to fit all observational and experimental data, the assumption l>Lpl>L_p implied in Bekenstein's model has to be relaxed.Comment: 13 pages, 8 figures,version accepted to be published in Astronomy and Astrophysic

    Observational Diagnostics of Gas Flows: Insights from Cosmological Simulations

    Full text link
    Galactic accretion interacts in complex ways with gaseous halos, including galactic winds. As a result, observational diagnostics typically probe a range of intertwined physical phenomena. Because of this complexity, cosmological hydrodynamic simulations have played a key role in developing observational diagnostics of galactic accretion. In this chapter, we review the status of different observational diagnostics of circumgalactic gas flows, in both absorption (galaxy pair and down-the-barrel observations in neutral hydrogen and metals; kinematic and azimuthal angle diagnostics; the cosmological column density distribution; and metallicity) and emission (Lya; UV metal lines; and diffuse X-rays). We conclude that there is no simple and robust way to identify galactic accretion in individual measurements. Rather, progress in testing galactic accretion models is likely to come from systematic, statistical comparisons of simulation predictions with observations. We discuss specific areas where progress is likely to be particularly fruitful over the next few years.Comment: Invited review to appear in Gas Accretion onto Galaxies, Astrophysics and Space Science Library, eds. A. J. Fox & R. Dave, to be published by Springer. Typos correcte

    Priority setting of ICU resources in an influenza pandemic: a qualitative study of the Canadian public's perspectives

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pandemic influenza may exacerbate existing scarcity of life-saving medical resources. As a result, decision-makers may be faced with making tough choices about who will receive care and who will have to wait or go without. Although previous studies have explored ethical issues in priority setting from the perspective of clinicians and policymakers, there has been little investigation into how the public views priority setting during a pandemic influenza, in particular related to intensive care resources.</p> <p>Methods</p> <p>To bridge this gap, we conducted three public town hall meetings across Canada to explore Canadian's perspectives on this ethical challenge. Town hall discussions group discussions were digitally recorded, transcribed, and analyzed using thematic analysis.</p> <p>Results</p> <p>Six interrelated themes emerged from the town hall discussions related to: ethical and empirical starting points for deliberation; criteria for setting priorities; pre-crisis planning; in-crisis decision-making; the need for public deliberation and input; and participants' deliberative struggle with the ethical issues.</p> <p>Conclusions</p> <p>Our findings underscore the importance of public consultation in pandemic planning for sustaining public trust in a public health emergency. Participants appreciated the empirical and ethical uncertainty of decision-making in an influenza pandemic and demonstrated nuanced ethical reasoning about priority setting of intensive care resources in an influenza pandemic. Policymakers may benefit from a better understanding the public's empirical and ethical 'starting points' in developing effective pandemic plans.</p
    • …
    corecore