306 research outputs found

    Sarcoma sinovial sobre grave traumatismo de pie

    Get PDF
    El sarcoma sinovial es una neoplasia mesenquimal maligna poco frecuente, apareciendo como una tumoración profunda de crecimiento lento, con nulo o escaso dolor y poca alteración funcional por lo que el diagnóstico suele ser tardío. El antecedente traumático de ha registrado en algún caso sin probar relación etiológica. Se presenta el caso clínico de un varón de 56 años de edad, que sufrió un grave traumatismo en los pies con fractura de ambos calcáneos y II, III y IV MTT pie derecho más luxación articulación metatarso falángica del primer dedo. Tras la intervención mediante enclavijado sin exposición de los focos de lesión, la evolución de las fracturas fue buena, observando a los diez meses una tumoración en el dorso del pie derecho diagnosticada como sarcoma sinovial por biopsia. Tras el estudio de extensión de la neoplasia de objetivó afectación multisitémica y a pesar de los tratamientos instaurados al paciente falleció tres meses después. Se discute la dificultad del diagnóstico diferencialSynovial sarcoma is an inusual mesenchymal neoplasm, appearing as a deep tumour of show growth, with none or rare pain and few functional disturbances. These features usually lead to a late diagnosis. Previous injury is present in some cases but there in no proven ethilogical relation. We present a male, age 56, who suffered a serious feet injury leading to fracture of both calcaneus and II, III and IV MTT right foot with dislocation MTT-falangic of first finger. After surgery with with closed Kirschner wires, the evolution was good. Ten months later a tumour appeared on the right foot, diagnosed as a synovial sarcoma after biopsy. The stating study showed multisystemic damage and the patient died three months in spite of treatment. We address the difficulty of the differential diagnose

    Monostable controllers for adaptive behavior

    No full text
    Recent artificial neural networks for machine learning have exploited transient dynamics around globally stable attractors, inspired by the properties of cortical microcolumns. Here we explore whether similarly constrained neural network controllers can be exploited for embodied, situated adaptive behaviour. We demonstrate that it is possible to evolve globally stable neurocontrollers containing a single basin of attraction, which nevertheless sustain multiple modes of behaviour. This is achieved by exploiting interaction between environmental input and transient dynamics. We present results that suggest that this globally stable regime may constitute an evolvable and dynamically rich subset of recurrent neural network configurations, especially in larger networks. We discuss the issue of scalability and the possibility that there may be alternative adaptive behaviour tasks that are more ‘attractor hungry’

    Towards the growth of Cu2ZnSn1-xGexS4 thin films by a single-stage process: Effect of substrate temperature and composition

    Full text link
    Cu2ZnSn1-xGexS4 (CZTGS) thin films prepared by flash evaporation of a Zn-rich Cu2ZnSn0.5Ge0.5S4 bulk compound in powder form, and a subsequent thermal annealing in S containing Ar atmosphere are studied. The effect of the substrate temperature during evaporation and the initial composition of the precursor powder on the growth mechanism and properties of the final CZTGS thin film are investigated. The microstructure of the films and elemental depth profiles depend strongly on the growth conditions used. Incorporation of Ge into the Cu2ZnSnS4 lattice is demonstrated by the shift of the relevant X-ray diffraction peaks and Raman vibrational modes towards higher diffraction angles and frequencies respectively. A Raman mode at around 348-351 cm-1 is identified as characteristic of CZTGS alloys for x = [Ge]/([Sn]+[Ge]) = 0.14-0.30. The supply of Ge enables the reduction of the Sn loss via a saccrifical Ge loss. This fact allows increasing the substrate temperature up to 350º C during the evaporation, forming a high quality kesterite material and therefore, reducing the deposition process to one single stageRC acknowledges financial support from Spanish MINECO within the Ramón y Cajal programme (RYC-2011-08521) and VIR for the Juan de la Cierva fellowship (JCI-2011-10782). GB also acknowledges the CSIC-JAE pre-doctoral program, co-funded by the European Social Fund. This work was supported by the Marie Curie-IRSES project (PVICOKEST, GA: 269167), Marie Curie-ITN project (KESTCELL, GA: 316488), DAAD project (INTERKEST, Ref: 57050358), and MINECO projects (SUNBEAM, ENE2013-49136-C4-3-R) (TEC2012-38901-C02-01). A. Scheu is acknowledged for GDOES measurement

    Towards the growth of Cu2ZnSn1 xGexS4 thin films by a single stage process Effect of substrate temperature and composition

    Get PDF
    Cu2ZnSn1-xGexS4 (CZTGS) thin films prepared by flash evaporation of a Zn-rich Cu2ZnSn0.5Ge0.5S4 bulk compound in powder form, and a subsequent thermal annealing in S containing Ar atmosphere are studied. The effect of the substrate temperature during evaporation and the initial composition of the precursor powder on the growth mechanism and properties of the final CZTGS thin film are investigated. The microstructure of the films and elemental depth profiles depend strongly on the growth conditions used. Incorporation of Ge into the Cu2ZnSnS4 lattice is demonstrated by the shift of the relevant X-ray diffraction peaks and Raman vibrational modes towards higher diffraction angles and frequencies respectively. A Raman mode at around 348-351 cm-1 is identified as characteristic of CZTGS alloys for x = [Ge]/([Sn]+[Ge]) = 0.14-0.30. The supply of Ge enables the reduction of the Sn loss via a saccrifical Ge loss. This fact allows increasing the substrate temperature up to 350º C during the evaporation, forming a high quality kesterite material and therefore, reducing the deposition process to one single stageRC acknowledges financial support from Spanish MINECO within the Ramón y Cajal programme (RYC-2011-08521) and VIR for the Juan de la Cierva fellowship (JCI-2011-10782). GB also acknowledges the CSIC-JAE pre-doctoral program, co-funded by the European Social Fund. This work was supported by the Marie Curie-IRSES project (PVICOKEST, GA: 269167), Marie Curie-ITN project (KESTCELL, GA: 316488), DAAD project (INTERKEST, Ref: 57050358), and MINECO projects (SUNBEAM, ENE2013-49136-C4-3-R) (TEC2012-38901-C02-01). A. Scheu is acknowledged for GDOES measurement

    Towards the growth of Cu2ZnSn1 xGexS4 thin films by a single-stage process: Effect of substrate temperature and composition

    Get PDF
    9 págs.; 7 figs.; 2 tabs.Cu2ZnSn1-xGexS4 (CZTGS) thin films prepared by flash evaporation of a Zn-rich Cu2ZnSn0.5Ge0.5S4 bulk compound in powder form, and a subsequent thermal annealing in S containing Ar atmosphere are studied. The effect of the substrate temperature during evaporation and the initial composition of the precursor powder on the growth mechanism and properties of the final CZTGS thin film are investigated. The microstructure of the films and elemental depth profiles depend strongly on the growth conditions used. Incorporation of Ge into the Cu2ZnSnS4 lattice is demonstrated by the shift of the relevant X-ray diffraction peaks and Raman vibrational modes towards higher diffraction angles and frequencies respectively. A Raman mode at around 348-351 cm-1 is identified as characteristic of CZTGS alloys for x = [Ge]/([Sn]+[Ge]) = 0.14-0.30. The supply of Ge enables the reduction of the Sn loss via a saccrifical Ge loss. This fact allows increasing the substrate temperature up to 350º C during the evaporation, forming a high quality kesterite material and therefore, reducing the deposition process to one single stage & 2015 Elsevier B.V. All rights reserved.RC acknowledges financial support from Spanish MINECO within the Ramón y Cajal programme (RYC-2011-08521) and VIR for the Juan de la Cierva fellowship (JCI-2011-10782). GB also acknowledges the CSIC-JAE Pre-doctoral Program, co-funded by the European Social Fund. This work was supported by the Marie Curie-IRSES Project (PVICOKEST, GA: 269167), Marie Curie-ITN project (KESTCELL, GA: 316488), DAAD project (INTERKEST, Ref: 57050358), and MINECO projects (SUNBEAM, ENE2013-49136-C4-3-R) (TEC2012- 38901-C02-01). A. Scheu is acknowledged for GDOES measurements.Peer Reviewe

    Gaia white dwarfs within 40 pc I : spectroscopic observations of new candidates

    Get PDF
    We present a spectroscopic survey of 230 white dwarf candidates within 40 pc of the Sun from the William Herschel Telescope and Gran Telescopio Canarias. All candidates were selected from Gaia Data Release 2 (DR2) and in almost all cases had no prior spectroscopic classifications. We find a total of 191 confirmed white dwarfs and 39 main-sequence star contaminants. The majority of stellar remnants in the sample are relatively cool (〈Teff〉 = 6200 K), showing either hydrogen Balmer lines or a featureless spectrum, corresponding to 89 DA and 76 DC white dwarfs, respectively. We also recover two DBA white dwarfs and 9–10 magnetic remnants. We find two carbon-bearing DQ stars and 14 new metal-rich white dwarfs. This includes the possible detection of the first ultra-cool white dwarf with metal lines. We describe three DZ stars for which we find at least four different metal species, including one which is strongly Fe- and Ni-rich, indicative of the accretion of a planetesimal with core-Earth composition. We find one extremely massive (1.31 ± 0.01 M⊙) DA white dwarf showing weak Balmer lines, possibly indicating stellar magnetism. Another white dwarf shows strong Balmer line emission but no infrared excess, suggesting a low-mass sub-stellar companion. High spectroscopic completeness (>99%) has now been reached for Gaia DR2 sources within 40 pc sample, in the northern hemisphere (δ > 0 deg) and located on the white dwarf cooling track in the Hertzsprung-Russell diagram. A statistical study of the full northern sample is presented in a companion paper

    TRY plant trait database - enhanced coverage and open access

    Get PDF
    Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives
    corecore