144 research outputs found

    On the positional and orientational order of water and methanol around indole: a study on the microscopic origin of solubility

    Get PDF
    Although they are both highly polar liquids, there are a number of compounds, such as many pharmaceuticals, which show vastly different solubilities in methanol compared with water. From theories of the hydrophobic effect, it might be predicted that this enhanced solubility is due to association between drugs and the less polar -CH3 groups on methanol. In this work, detailed analysis on the atomic structural interactions between water, methanol and the small molecule indole – which is a precursor to many drugs and is sparingly soluble in water yet highly soluble in methanol – reveal that indole preferentially interacts with both water and methanol via electrostatic interactions rather than with direction interactions to the –CH3 groups. The presence of methanol hydrogen bonds with p electrons of the benzene ring of indole can explain the increase in solubility of indole in methanol relative to water. In addition, the excess entropy calculations performed here suggest that this solvation is enthalpically rather than entropically driven.Postprint (author's final draft

    A comparative study of the incidence of Cladosporium conidia in the atmosphere of five spanish cities

    Get PDF

    Aqueous electrolytes confined within functionalized silica nanopores

    Get PDF
    Molecular dynamics simulations have been carried out to investigate structural and dynamical characteristics of NaCl aqueous solutions confined within silica nanopores in contact with a “bulk-like” reservoir. Two types of pores, with diameters intermediate between 20 Å and 37.5 Å, were investigated: The first one corresponded to hydrophobic cavities, in which the prevailing wall-solution interactions were of the Lennard-Jones type. In addition, we also examined the behavior of solutions trapped within hydrophilic cavities, in which a set of unsaturated O-sites at the wall were transformed in polar silanol Si–OH groups. In all cases, the overall concentrations of the trapped electrolytes exhibited important reductions that, in the case of the narrowest pores, attained 50% of the bulk value. Local concentrations within the pores also showed important fluctuations. In hydrophobic cavities, the close vicinity of the pore wall was coated exclusively by the solvent, whereas in hydrophilic pores, selective adsorption of Na+ ions was also observed. Mass and charge transport were also investigated. Individual diffusion coefficients did not present large codifications from what is perceived in the bulk; contrasting, the electrical conductivity exhibited important reductions. The qualitative differences are rationalized in terms of simple geometrical considerations.Peer ReviewedPostprint (published version

    Hydration interactions: aqueous solvent effects in electric double layers

    Full text link
    A model for ionic solutions with an attractive short-range pair interaction between the ions is presented. The short-range interaction is accounted for by adding a quadratic non-local term to the Poisson-Boltzmann free energy. The model is used to study solvent effects in a planar electric double layer. The counter-ion density is found to increase near the charged surface, as compared with the Poisson-Boltzmann theory, and to decrease at larger distances. The ion density profile is studied analytically in the case where the ion distribution near the plate is dominated only by counter-ions. Further away from the plate the density distribution can be described using a Poisson-Boltzmann theory with an effective surface charge that is smaller than the actual one.Comment: 11 Figures in 13 files + LaTex file. 20 pages. Accepted to Phys. Rev. E. Corrected typos and reference

    More than smell - COVID-19 is associated with severe impairment of smell, taste, and chemesthesis

    Get PDF
    Recent anecdotal and scientific reports have provided evidence of a link between COVID-19 and chemosensory impairments such as anosmia. However, these reports have downplayed or failed to distinguish potential effects on taste, ignored chemesthesis, and generally lacked quantitative measurements. Here, we report the development, implementation and initial results of a multi-lingual, international questionnaire to assess self-reported quantity and quality of perception in three distinct chemosensory modalities (smell, taste, and chemesthesis) before and during COVID-19. In the first 11 days after questionnaire launch, 4039 participants (2913 women, 1118 men, 8 other, ages 19-79) reported a COVID-19 diagnosis either via laboratory tests or clinical assessment. Importantly, smell, taste and chemesthetic function were each significantly reduced compared to their status before the disease. Difference scores (maximum possible change ±100) revealed a mean reduction of smell (-79.7 ± 28.7, mean ± SD), taste (-69.0 ± 32.6), and chemesthetic (-37.3 ± 36.2) function during COVID-19. Qualitative changes in olfactory ability (parosmia and phantosmia) were relatively rare and correlated with smell loss. Importantly, perceived nasal obstruction did not account for smell loss. Furthermore, chemosensory impairments were similar between participants in the laboratory test and clinical assessment groups. These results show that COVID-19-associated chemosensory impairment is not limited to smell, but also affects taste and chemesthesis. The multimodal impact of COVID-19 and lack of perceived nasal obstruction suggest that SARS-CoV-2 infection may disrupt sensory-neural mechanisms.info:eu-repo/semantics/acceptedVersio

    Molecular dynamics simulations of supercritical water confined within a carbon-slit pore

    Get PDF
    We report the results of a series of molecular dynamics simulations of water inside a carbon-slit pore at supercritical conditions. A range of densities corresponding from liquid (0.66gcm¿3) to gas environments (0.08gcm¿3) at the supercritical temperature of 673K were considered. Our findings are compared with previous studies of liquid water confined in graphene nanochannels at ambient and high temperatures, and indicate that the microscopic structure of water evolves from hydrogen bond networks characteristic of hot dense liquids to looser arrangements where the dominant units are water monomers and dimers. Water permittivity was found to be very small at low densities, with a tendency to grow with density and to reach typical values of unconfined supercritical water at 0.66gcm¿3). In supercritical conditions, the residence time of water at interfaces is roughly similar to that of water in the central regions of the slabs, if the size of the considered region is taken into account. That time span is long enough to compute dynamical properties such as diffusion or spectral densities. Water diffusion in supercritical states is much faster at low densities, and it is produced in such a way that, at interfaces, translational diffusion is mainly produced along planes parallel to the carbon walls. Spectral frequency shifts depend on several factors, being temperature and density effects the most relevant. However, we can observe corrections due to confinement, important both at the graphene interface and in the central region of the water slab.Universidad Pablo de Olavide. Departamento de Sistemas Físicos, Químicos y NaturalesVersión del edito

    Add-on inhaled budesonide in the treatment of hospitalised patients with COVID-19 : a randomised clinical trial

    Get PDF
    SARS-CoV-2 vaccines have been extremely effective to reduce the incidence of severe COVID19 [1-3], but effective and safe treatments of the acute infection are still limited [4, 5]. An uncontrolled pulmonary inflammatory response to SARS-CoV-2 is considered a key pathogenic mechanism of COVID19 progression [6], so systemic dexamethasone is recommended in severe cases [5, 7]. On the other hand, in very mild patients at home inhaled corticosteroids (ICS) may prevent disease progression [8-11]. Whether ICS prevent disease progression too in patients hospitalised because of COVID19 has not been explored before. Accordingly, we designed an investigator-initiated, open-label, randomised clinical trial (RCT) to explore the efficacy of adding inhaled budesonide to usual care to prevent disease progression in patients hospitalised because of COVID19 pneumonia. We also monitored carefully the safety of this intervention since there are concerns about the use of systemic corticosteroids in other viral (influenza) lung infections [12]

    ¿Por qué y cómo tener en cuenta al cannabis en nuestros pacientes fumadores?

    Get PDF
    El Proyecto ÉVICT (Evictproject.org), a raíz del aumento de consumo de cannabis en población juvenil española, ha estudiado su asociación con el tabaco, concluyendo que el consumo conjunto de tabaco y cannabis: tiene una influencia en el proceso de aprender a fumar, pues el inicio puede ser conjunto y con influencia bidireccional; tiene una influencia en el desarrollo de dependencia pues su interacción es relevante para el desarrollo de este trastorno, y tiene una influencia en la toxicidad, pues probablemente, el fumar tabaco y cannabis genera mayores problemas que fumar solo una de las 2. Y, por tanto, el equipo EVICT emite unas consideraciones en prevención: diferenciar uso medicinal y recreativo; comunicar que fumar cannabis no es terapéutico ni inocuo, y puede ayudar a generar dependencia de nicotina o, menos frecuentemente, al propio cannabis. Consideraciones en abordaje y tratamiento: en personas que consumen tabaco/cannabis debemos plantear como primera opción el cese de las 2 sustancias. Consideraciones en reducción de daños: a quienes solo consumen productos de tabaco/cannabis, los programas serían más aplicables a aquella cuyo consumo se considere más problemático

    La estimación de proporciones mediante técnicas Bayesianas

    Get PDF
    The estimation procedures based on Bayes' Theorem are still an unusual option in many of the environments of classic parametric inference. The aim of this paper is to show an effective scheme for the use of Bayesian estimation of unknown parameters. We have opted to focus on the estimation of parameters under the assumption of a binomial model, so that it can be followed by all those situations that meet the aforementioned probabilistic model. This approximation was studied in comparison with the classic parametric approximation, both in its point version and by means of interval estimation. On a study, by simulating samples of several sizes, we obtained empirical evidence regarding the advantage of the Bayesian procedure.ResumenLos procedimientos de estimación basados en el teorema de Bayes son inusuales en los diferentes ámbitos de aplicación de la inferencia paramétrica clásica. El objetivo de este trabajo es presentar un esquema para la estimación bayesiana de parámetros bajo los supuestos de un modelo binomial. El procedimiento Bayes se estudia en comparación con la aproximación paramétrica cl??sica, ambas opciones, en su versión puntual y mediante intervalos de estimación. Se presenta también un estudio de simulación con diferentes tamaños muestrales en el que se ponen de manifiesto las ventajas del procedimiento bayesiano.AbstractThe estimation procedures based on Bayes' Theorem are still an unusual option in many of the environments of classic parametric inference. The aim of this paper is to show an effective scheme for the use of Bayesian estimation of unknown parameters. We have opted to focus on the estimation of parameters under the assumption of a binomial model, so that it can be followed by all those situations that meet the aforementioned probabilistic model. This approximation was studied in comparison with the classic parametric approximation, both in its point version and by means of interval estimation. On a study, by simulating samples of several sizes, we obtained empirical evidence regarding the advantage of the Bayesian procedure

    The CARMENES search for exoplanets around M dwarfs High-resolution optical and near-infrared spectroscopy of 324 survey stars

    Get PDF
    The CARMENES radial velocity (RV) survey is observing 324 M dwarfs to search for any orbiting planets. In this paper, we present the survey sample by publishing one CARMENES spectrum for each M dwarf. These spectra cover the wavelength range 520–1710 nm at a resolution of at least R >80 000, and we measure its RV, Hα emission, and projected rotation velocity. We present an atlas of high-resolution M-dwarf spectra and compare the spectra to atmospheric models. To quantify the RV precision that can be achieved in low-mass stars over the CARMENES wavelength range, we analyze our empirical information on the RV precision from more than 6500 observations. We compare our high-resolution M-dwarf spectra to atmospheric models where we determine the spectroscopic RV information content, Q, and signal-to-noise ratio. We find that for all M-type dwarfs, the highest RV precision can be reached in the wavelength range 700–900 nm. Observations at longer wavelengths are equally precise only at the very latest spectral types (M8 and M9). We demonstrate that in this spectroscopic range, the large amount of absorption features compensates for the intrinsic faintness of an M7 star. To reach an RV precision of 1 m s−1 in very low mass M dwarfs at longer wavelengths likely requires the use of a 10 m class telescope. For spectral types M6 and earlier, the combination of a red visual and a near-infrared spectrograph is ideal to search for low-mass planets and to distinguish between planets and stellar variability. At a 4 m class telescope, an instrument like CARMENES has the potential to push the RV precision well below the typical jitter level of 3–4 m s−1
    corecore