141 research outputs found
Burkholderia thailandensis harbors two identical rhl gene clusters responsible for the biosynthesis of rhamnolipids
<p>Abstract</p> <p>Background</p> <p>Rhamnolipids are surface active molecules composed of rhamnose and β-hydroxydecanoic acid. These biosurfactants are produced mainly by <it>Pseudomonas aeruginosa </it>and have been thoroughly investigated since their early discovery. Recently, they have attracted renewed attention because of their involvement in various multicellular behaviors. Despite this high interest, only very few studies have focused on the production of rhamnolipids by <it>Burkholderia </it>species.</p> <p>Results</p> <p>Orthologs of <it>rhlA</it>, <it>rhlB </it>and <it>rhlC</it>, which are responsible for the biosynthesis of rhamnolipids in <it>P. aeruginosa</it>, have been found in the non-infectious <it>Burkholderia thailandensis</it>, as well as in the genetically similar important pathogen <it>B. pseudomallei</it>. In contrast to <it>P. aeruginosa</it>, both <it>Burkholderia </it>species contain these three genes necessary for rhamnolipid production within a single gene cluster. Furthermore, two identical, paralogous copies of this gene cluster are found on the second chromosome of these bacteria. Both <it>Burkholderia </it>spp. produce rhamnolipids containing 3-hydroxy fatty acid moieties with longer side chains than those described for <it>P. aeruginosa</it>. Additionally, the rhamnolipids produced by <it>B. thailandensis </it>contain a much larger proportion of dirhamnolipids versus monorhamnolipids when compared to <it>P. aeruginosa</it>. The rhamnolipids produced by <it>B. thailandensis </it>reduce the surface tension of water to 42 mN/m while displaying a critical micelle concentration value of 225 mg/L. Separate mutations in both <it>rhlA </it>alleles, which are responsible for the synthesis of the rhamnolipid precursor 3-(3-hydroxyalkanoyloxy)alkanoic acid, prove that both copies of the <it>rhl </it>gene cluster are functional, but one contributes more to the total production than the other. Finally, a double Δ<it>rhlA </it>mutant that is completely devoid of rhamnolipid production is incapable of swarming motility, showing that both gene clusters contribute to this phenotype.</p> <p>Conclusions</p> <p>Collectively, these results add another <it>Burkholderia </it>species to the list of bacteria able to produce rhamnolipids and this, by the means of two identical functional gene clusters. Our results also demonstrate the very impressive tensio-active properties these long-chain rhamnolipids possess in comparison to the well-studied short-chain ones from <it>P. aeruginosa</it>.</p
Preparation, imaging, and quantification of bacterial surface motility assays.
Publication fees for this article were partially sponsored by Bruker Corporation.International audienceBacterial surface motility, such as swarming, is commonly examined in the laboratory using plate assays that necessitate specific concentrations of agar and sometimes inclusion of specific nutrients in the growth medium. The preparation of such explicit media and surface growth conditions serves to provide the favorable conditions that allow not just bacterial growth but coordinated motility of bacteria over these surfaces within thin liquid films. Reproducibility of swarm plate and other surface motility plate assays can be a major challenge. Especially for more "temperate swarmers" that exhibit motility only within agar ranges of 0.4%-0.8% (wt/vol), minor changes in protocol or laboratory environment can greatly influence swarm assay results. "Wettability", or water content at the liquid-solid-air interface of these plate assays, is often a key variable to be controlled. An additional challenge in assessing swarming is how to quantify observed differences between any two (or more) experiments. Here we detail a versatile two-phase protocol to prepare and image swarm assays. We include guidelines to circumvent the challenges commonly associated with swarm assay media preparation and quantification of data from these assays. We specifically demonstrate our method using bacteria that express fluorescent or bioluminescent genetic reporters like green fluorescent protein (GFP), luciferase (lux operon), or cellular stains to enable time-lapse optical imaging. We further demonstrate the ability of our method to track competing swarming species in the same experiment
Use of the lambda Red recombinase system to rapidly generate mutants in Pseudomonas aeruginosa
<p>Abstract</p> <p>Background</p> <p>The Red recombinase system of bacteriophage lambda has been used to inactivate chromosomal genes in various bacteria and fungi. The procedure consists of electroporating a polymerase chain reaction (PCR) fragment that was obtained with a 1- or 3-step PCR protocol and that carries an antibiotic cassette flanked by a region homologous to the target locus into a strain that expresses the lambda Red recombination system.</p> <p>Results</p> <p>This system has been modified for use in <it>Pseudomonas aeruginosa</it>. Chromosomal DNA deletions of single genes were generated using 3-step PCR products containing flanking regions 400–600 nucleotides (nt) in length that are homologous to the target sequence. A 1-step PCR product with a homologous extension flanking region of only 100 nt was in some cases sufficient to obtain the desired mutant. We further showed that the <it>P. aeruginosa </it>strain PA14 non-redundant transposon library can be used in conjunction with the lambda Red technique to rapidly generate large chromosomal deletions or transfer mutated genes into various PA14 isogenic mutants to create multi-locus knockout mutants.</p> <p>Conclusion</p> <p>The lambda Red-based technique can be used efficiently to generate mutants in <it>P. aeruginosa</it>. The main advantage of this procedure is its rapidity as mutants can be easily obtained in less than a week if the 3-step PCR procedure is used, or in less than three days if the mutation needs to be transferred from one strain to another.</p
Extracellular DNA release, quorum sensing, and PrrF1/F2 small RNAs are key players in Pseudomonas aeruginosa tobramycin-enhanced biofilm formation
Biofilms are structured microbial communities that are the leading cause of numerous chronic infections which are difficult to eradicate. Within the lungs of individuals with cystic fibrosis (CF), Pseudomonas aeruginosa causes persistent biofilm infection that is commonly treated with aminoglycoside antibiotics such as tobramycin. However, sublethal concentrations of this aminoglycoside were previously shown to increase biofilm formation by P. aeruginosa, but the underlying adaptive mechanisms still remain elusive. Herein, we combined confocal laser scanning microscope analyses, proteomics profiling, gene expression assays and phenotypic studies to unravel P. aeruginosa potential adaptive mechanisms in response to tobramycin exposure during biofilm growth. Under this condition, we show that the modified biofilm architecture is related at least in part to increased extracellular DNA (eDNA) release, most likely as a result of biofilm cell death. Furthermore, the activity of quorum sensing (QS) systems was increased, leading to higher production of QS signaling molecules. We also demonstrate upon tobramycin exposure an increase in expression of the PrrF small regulatory RNAs, as well as expression of iron uptake systems. Remarkably, biofilm biovolumes and eDNA relative abundances in pqs and prrF mutant strains decrease in the presence of tobramycin. Overall, our findings offer experimental evidences for a potential adaptive mechanism linking PrrF sRNAs, QS signaling, biofilm cell death, eDNA release, and tobramycin-enhanced biofilm formation in P. aeruginosa. These specific adaptive mechanisms should be considered to improve treatment strategies against P. aeruginosa biofilm establishment in CF patients’ lungs
MexEF-OprN Efflux Pump Exports the Pseudomonas Quinolone Signal (PQS) Precursor HHQ (4-hydroxy-2-heptylquinoline)
Bacterial cells have evolved the capacity to communicate between each other via small diffusible chemical signals termed autoinducers. Pseudomonas aeruginosa is an opportunistic pathogen involved, among others, in cystic fibrosis complications. Virulence of P. aeruginosa relies on its ability to produce a number of autoinducers, including 4-hydroxy-2-alkylquinolines (HAQ). In a cell density-dependent manner, accumulated signals induce the expression of multiple targets, especially virulence factors. This phenomenon, called quorum sensing, promotes bacterial capacity to cause disease. Furthermore, P. aeruginosa possesses many multidrug efflux pumps conferring adaptive resistance to antibiotics. Activity of some of these efflux pumps also influences quorum sensing. The present study demonstrates that the MexEF-OprN efflux pump modulates quorum sensing through secretion of a signalling molecule belonging to the HAQ family. Moreover, activation of MexEF-OprN reduces virulence factor expression and swarming motility. Since MexEF-OprN can be activated in infected hosts even in the absence of antibiotic selective pressure, it could promote establishment of chronic infections in the lungs of people suffering from cystic fibrosis, thus diminishing the immune response to virulence factors. Therapeutic drugs that affect multidrug efflux pumps and HAQ-mediated quorum sensing would be valuable tools to shut down bacterial virulence
Rhamnolipids: diversity of structures, microbial origins and roles
Rhamnolipids are glycolipidic biosurfactants produced by various bacterial species. They were initially found as exoproducts of the opportunistic pathogen Pseudomonas aeruginosa and described as a mixture of four congeners: α-L-rhamnopyranosyl-α-L-rhamnopyranosyl-β-hydroxydecanoyl-β-hydroxydecanoate (Rha-Rha-C10-C10), α-L-rhamnopyranosyl-α-L-rhamnopyranosyl-β-hydroxydecanoate (Rha-Rha-C10), as well as their mono-rhamnolipid congeners Rha-C10-C10 and Rha-C10. The development of more sensitive analytical techniques has lead to the further discovery of a wide diversity of rhamnolipid congeners and homologues (about 60) that are produced at different concentrations by various Pseudomonas species and by bacteria belonging to other families, classes, or even phyla. For example, various Burkholderia species have been shown to produce rhamnolipids that have longer alkyl chains than those produced by P. aeruginosa. In P. aeruginosa, three genes, carried on two distinct operons, code for the enzymes responsible for the final steps of rhamnolipid synthesis: one operon carries the rhlAB genes and the other rhlC. Genes highly similar to rhlA, rhlB, and rhlC have also been found in various Burkholderia species but grouped within one putative operon, and they have been shown to be required for rhamnolipid production as well. The exact physiological function of these secondary metabolites is still unclear. Most identified activities are derived from the surface activity, wetting ability, detergency, and other amphipathic-related properties of these molecules. Indeed, rhamnolipids promote the uptake and biodegradation of poorly soluble substrates, act as immune modulators and virulence factors, have antimicrobial activities, and are involved in surface motility and in bacterial biofilm development
Effect of Mono and Di-rhamnolipids on Biofilms Pre-formed by Bacillus subtilis BBK006.
Different microbial inhibition strategies based on the planktonic bacterial physiology have been known to have limited efficacy on the growth of biofilms communities. This problem can be exacerbated by the emergence of increasingly resistant clinical strains. Biosurfactants have merited renewed interest in both clinical and hygienic sectors due to their potential to disperse microbial biofilms. In this work, we explore the aspects of Bacillus subtilis BBK006 biofilms and examine the contribution of biologically derived surface-active agents (rhamnolipids) to the disruption or inhibition of microbial biofilms produced by Bacillus subtilis BBK006. The ability of mono-rhamnolipids (Rha-C10-C10) produced by Pseudomonas aeruginosa ATCC 9027 and the di-rhamnolipids (Rha-Rha-C14-C14) produced by Burkholderia thailandensis E264, and phosphate-buffered saline to disrupt biofilm of Bacillus subtilis BBK006 was evaluated. The biofilm produced by Bacillus subtilis BBK006 was more sensitive to the di-rhamnolipids (0.4 g/L) produced by Burkholderia thailandensis than the mono-rhamnolipids (0.4 g/L) produced by Pseudomonas aeruginosa ATCC 9027. Rhamnolipids are biologically produced compounds safe for human use. This makes them ideal candidates for use in new generations of bacterial dispersal agents and useful for use as adjuvants for existing microbial suppression or eradication strategies
Total synthesis, isolation, surfactant properties, and biological evaluation of ananatosides and related macrodilactone-containing rhamnolipids
Rhamnolipids are a specific class of microbial surfactants, which hold great biotechnological and therapeutic potential. However, their exploitation at the industrial level is hampered because they are mainly produced by the opportunistic pathogenPseudomonas aeruginosa. The non-human pathogenic bacteriumPantoea ananatisis an alternative producer of rhamnolipid-like metabolites containing glucose instead of rhamnose residues. Herein, we present the isolation, structural characterization, and total synthesis of ananatoside A, a 15-membered macrodilactone-containing glucolipid, and ananatoside B, its open-chain congener, from organic extracts ofP. ananatis. Ananatoside A was synthesized through three alternative pathways involving either an intramolecular glycosylation, a chemical macrolactonization or a direct enzymatic transformation from ananatoside B. A series of diasteroisomerically pure (1→2), (1→3), and (1→4)-macrolactonized rhamnolipids were also synthesized through intramolecular glycosylation and their anomeric configurations as well as ring conformations were solved using molecular modeling in tandem with NMR studies. We show that ananatoside B is a more potent surfactant than its macrolide counterpart. We present evidence that macrolactonization of rhamnolipids enhances their cytotoxic and hemolytic potential, pointing towards a mechanism involving the formation of pores into the lipidic cell membrane. Lastly, we demonstrate that ananatoside A and ananatoside B as well as synthetic macrolactonized rhamnolipids can be perceived by the plant immune system, and that this sensing is more pronounced for a macrolide featuring a rhamnose moiety in its native1C4conformation. Altogether our results suggest that macrolactonization of glycolipids can dramatically interfere with their surfactant properties and biological activity
Unravelling the genome-wide contributions of specific 2-alkyl-4-quinolones and PqsE to quorum sensing in Pseudomonas aeruginosa
The pqs quorum sensing (QS) system is crucial for Pseudomonas aeruginosa virulence both in vitro and in animal models of infection and is considered an ideal target for the development of anti-virulence agents. However, the precise role played by each individual component of this complex QS circuit in the control of virulence remains to be elucidated. Key components of the pqs QS system are 2-heptyl-4-hydroxyquinoline (HHQ), 2-heptyl-3-hydroxy-4-quinolone (PQS), 2-heptyl-4-hydroxyquinoline N-oxide (HQNO), the transcriptional regulator PqsR and the PQS-effector element PqsE. To define the individual contribution of each of these components to QS-mediated regulation, transcriptomic analyses were performed and validated on engineered P. aeruginosa strains in which the biosynthesis of 2-alkyl 4-quinolones (AQs) and expression of pqsE and pqsR have been uncoupled, facilitating the identification of the genes controlled by individual pqs system components. The results obtained demonstrate that i) the PQS biosynthetic precursor HHQ triggers a PqsR-dependent positive feedback loop that leads to the increased expression of only the pqsABCDE operon, ii) PqsE is involved in the regulation of diverse genes coding for key virulence determinants and biofilm development, iii) PQS promotes AQ biosynthesis, the expression of genes involved in the iron-starvation response and virulence factor production via PqsR-dependent and PqsR-independent pathways, and iv) HQNO does not influence transcription and hence does not function as a QS signal molecule. Overall this work has facilitated identification of the specific regulons controlled by individual pqs system components and uncovered the ability of PQS to contribute to gene regulation independent of both its ability to activate PqsR and to induce the iron-starvation response
Surface Hardness Impairment of Quorum Sensing and Swarming for Pseudomonas aeruginosa
The importance of rhamnolipid to swarming of the bacterium Pseudomonas aeruginosa is well established. It is frequently, but not exclusively, observed that P. aeruginosa swarms in tendril patterns—formation of these tendrils requires rhamnolipid. We were interested to explain the impact of surface changes on P. aeruginosa swarm tendril development. Here we report that P. aeruginosa quorum sensing and rhamnolipid production is impaired when growing on harder semi-solid surfaces. P. aeruginosa wild-type swarms showed huge variation in tendril formation with small deviations to the “standard” swarm agar concentration of 0.5%. These macroscopic differences correlated with microscopic investigation of cells close to the advancing swarm edge using fluorescent gene reporters. Tendril swarms showed significant rhlA-gfp reporter expression right up to the advancing edge of swarming cells while swarms without tendrils (grown on harder agar) showed no rhlA-gfp reporter expression near the advancing edge. This difference in rhamnolipid gene expression can be explained by the necessity of quorum sensing for rhamnolipid production. We provide evidence that harder surfaces seem to limit induction of quorum sensing genes near the advancing swarm edge and these localized effects were sufficient to explain the lack of tendril formation on hard agar. We were unable to artificially stimulate rhamnolipid tendril formation with added acyl-homoserine lactone signals or increasing the carbon nutrients. This suggests that quorum sensing on surfaces is controlled in a manner that is not solely population dependent
- …