1,153 research outputs found

    Positive Cross Correlations in a Normal-Conducting Fermionic Beam Splitter

    Full text link
    We investigate a beam splitter experiment implemented in a normal conducting fermionic electron gas in the quantum Hall regime. The cross-correlations between the current fluctuations in the two exit leads of the three terminal device are found to be negative, zero or even positive depending on the scattering mechanism within the device. Reversal of the cross-correlations sign occurs due to interaction between different edge-states and does not reflect the statistics of the fermionic particles which `antibunch'.Comment: 4 pages, 4 figure

    Finding largest small polygons with GloptiPoly

    Get PDF
    A small polygon is a convex polygon of unit diameter. We are interested in small polygons which have the largest area for a given number of vertices nn. Many instances are already solved in the literature, namely for all odd nn, and for n=4,6n=4, 6 and 8. Thus, for even n≄10n\geq 10, instances of this problem remain open. Finding those largest small polygons can be formulated as nonconvex quadratic programming problems which can challenge state-of-the-art global optimization algorithms. We show that a recently developed technique for global polynomial optimization, based on a semidefinite programming approach to the generalized problem of moments and implemented in the public-domain Matlab package GloptiPoly, can successfully find largest small polygons for n=10n=10 and n=12n=12. Therefore this significantly improves existing results in the domain. When coupled with accurate convex conic solvers, GloptiPoly can provide numerical guarantees of global optimality, as well as rigorous guarantees relying on interval arithmetic

    The chameleon groups of Richard J. Thompson: automorphisms and dynamics

    Get PDF
    The automorphism groups of several of Thompson's countable groups of piecewise linear homeomorphisms of the line and circle are computed and it is shown that the outer automorphism groups of these groups are relatively small. These results can be interpreted as stability results for certain structures of PL functions on the circle. Machinery is developed to relate the structures on the circle to corresponding structures on the line

    The electromagnetic Christodoulou memory effect and its application to neutron star binary mergers

    Full text link
    Gravitational waves are predicted by the general theory of relativity. It has been shown that gravitational waves have a nonlinear memory, displacing test masses permanently. This is called the Christodoulou memory. We proved that the electromagnetic field contributes at highest order to the nonlinear memory effect of gravitational waves, enlarging the permanent displacement of test masses. In experiments like LISA or LIGO which measure distances of test masses, the Christodoulou memory will manifest itself as a permanent displacement of these objects. It has been suggested to detect the Christodoulou memory effect using radio telescopes investigating small changes in pulsarñ€ơÄîs pulse arrival times. The latter experiments are based on present-day technology and measure changes in frequency. In the present paper, we study the electromagnetic Christodoulou memory effect and compute it for binary neutron star mergers. These are typical sources of gravitational radiation. During these processes, not only mass and momenta are radiated away in form of gravitational waves, but also very strong magnetic fields are produced and radiated away. Moreover, a large portion of the energy is carried away by neutrinos. We give constraints on the conditions, where the energy transported by electromagnetic radiation is of similar or slightly higher order than the energy radiated in gravitational waves or in form of neutrinos. We find that for coalescing neutron stars, large magnetic fields magnify the Christodoulou memory as long as the gaseous environment is sufficiently rarefied. Thus the observed effect on test masses of a laser interferometer gravitational wave detector will be enlarged by the contribution of the electromagnetic field. Therefore, the present results are important for the planned experiments. Looking at the null asymptotics of spacetimes, which are solutions of the Einsteinñ€ơÄìMaxwell equations, we derive the electromagnetic Christodoulou memory effect. We obtain an exact solution of the full nonlinear problem, no approximations were used. Moreover, our results allow to answer astrophysical questions, as the knowledge about the amount of energy radiated away in a neutron star binary merger enables us to gain information about the source of the gravitational waves.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/98597/1/0264-9381_29_21_215003.pd

    Does gender matter? A cross-national investigation of primary class-room discipline.

    Get PDF
    © 2018 Informa UK Limited, trading as Taylor & Francis GroupFewer than 15% of primary school teachers in both Germany and the UK are male. With the on-going international debate about educational performance highlighting the widening gender achievement gap between girl and boy pupils, the demand for more male teachers has become prevalent in educational discourse. Concerns have frequently been raised about the underachievement of boys, with claims that the lack of male ‘role models’ in schools has an adverse effect on boys’ academic motivation and engagement. Although previous research has examined ‘teaching’ as institutional talk, men’s linguistic behaviour in the classroom remains largely ignored, especially in regard to enacting discipline. Using empirical spoken data collected from four primary school classrooms in both the UK and in Germany, this paper examines the linguistic discipline strategies of eight male and eight female teachers using Interactional Sociolinguistics to address the question, does teacher gender matter?Peer reviewedFinal Accepted Versio

    Microsecond folding dynamics of the F13W G29A mutant of the B domain of staphylococcal protein A by laser-induced temperature jump

    Get PDF
    The small size (58 residues) and simple structure of the B domain of staphylococcal protein A (BdpA) have led to this domain being a paradigm for theoretical studies of folding. Experimental studies of the folding of BdpA have been limited by the rapidity of its folding kinetics. We report the folding kinetics of a fluorescent mutant of BdpA (G29A F13W), named F13W*, using nanosecond laser-induced temperature jump experiments. Automation of the apparatus has permitted large data sets to be acquired that provide excellent signal-to-noise ratio over a wide range of experimental conditions. By measuring the temperature and denaturant dependence of equilibrium and kinetic data for F13W*, we show that thermodynamic modeling of multidimensional equilibrium and kinetic surfaces is a robust method that allows reliable extrapolation of rate constants to regions of the folding landscape not directly accessible experimentally. The results reveal that F13W* is the fastest-folding protein of its size studied to date, with a maximum folding rate constant at 0 M guanidinium chloride and 45°C of 249,000 (s-1). Assuming the single-exponential kinetics represent barrier-limited folding, these data limit the value for the preexponential factor for folding of this protein to at least ≈2 x 10(6) s(-1)

    On the Nonlinear Stability of Asymptotically Anti-de Sitter Solutions

    Get PDF
    Despite the recent evidence that anti-de Sitter spacetime is nonlinearly unstable, we argue that many asymptotically anti-de Sitter solutions are nonlinearly stable. This includes geons, boson stars, and black holes. As part of our argument, we calculate the frequencies of long-lived gravitational quasinormal modes of AdS black holes in various dimensions. We also discuss a new class of asymptotically anti-de Sitter solutions describing noncoalescing black hole binaries.Comment: 26 pages. 5 figure

    Variable echo time imaging for detecting the short T2* components of the sciatic nerve: a validation study

    Get PDF
    OBJECTIVE: The aim of this study was to develop and validate an MRI protocol based on a variable echo time (vTE) sensitive to the short T2* components of the sciatic nerve. MATERIALS AND METHODS: 15 healthy subjects (M/F: 9/6; age: 21-62) were scanned at 3T targeting the sciatic nerve at the thigh bilaterally, using a dual echo variable echo time (vTE) sequence (based on a spoiled gradient echo acquisition) with echo times of 0.98/5.37 ms. Apparent T2* (aT2*) values of the sciatic nerves were calculated with a mono-exponential fit and used for data comparison. RESULTS: There were no significant differences in aT2* related to side, sex, age, and BMI, even though small differences for side were reported. Good-to-excellent repeatability and reproducibility were found for geometry of ROIs (Dice indices: intra-rater 0.68-0.7; inter-rater 0.70-0.72) and the related aT2* measures (intra-inter reader ICC 0.95-0.97; 0.66-0.85) from two different operators. Side-related signal-to-noise-ratio non-significant differences were reported, while contrast-to-noise-ratio measures were excellent both for side and echo. DISCUSSION: Our study introduces a novel MR sequence sensitive to the short T2* components of the sciatic nerve and may be used for the study of peripheral nerve disorders
    • 

    corecore