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AUTOMORPHISMS AND DYNAMICS
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PART I. BACKGROUND

0. Introduction

In the late 1960's Richard Thompson introduced a family of groups in connection
with studies in logic. Thompson's groups have since appeared in a variety of mathe-
matical topics: the word problem, infinite simple groups, homotopy and shape theory,
group cohomology, dynamical systems and analysis. Universal algebraic properties of
these groups have been exploited in several of these connections.

We use the interaction between Thompson's groups, ordered permutation groups
and dynamical systems to analyze the automorphisms of some of the groups. Along
the way we discover rigidity properties of some local structures on the real line and
the circle. To explain these connections, we describe one of our results.

Among other ways, Thompson's groups can be described as all bijections of the
real line, the unit interval or the circle that satisfy certain local properties. If we view
the circle S1 as R/Z (the reals mod the integers), then one of Thompson's groups T
consists of all homeomorphisms f from S1 to itself that
(1) are piecewise linear (PL),
(2) preserve orientation,
(3) use only slopes that are integral powers of 2,
(4) have their breaks (discontinuities of/') in the set Z[^] (all ^/26 where a and b are

integers), and
(5) satisfy/(ZCiJ) c= Z[i].

Item (1) means that each x in S1 has an open neighborhood in which x is (at most)
the only break of/. Thus elements of T have finitely many breaks.

The homeomorphism x h-> — x on R induces an involution (A on S1 with fixed
points Z and i + Z that normalizes T. We prove the outer automorphism group of T
has order 2 with generator [^]. The first step uses the theory of ordered permutation
groups to show that any automorphism of T is realized as a conjugation by some self
homeomorphism of S1. The second step uses dynamical systems techniques to show
that such a self homeomorphism (up to composition with pi) is in T. We discuss this
second step.

Properties (1)-(5) are local properties in the same way that being smooth is a local
property. The group T both defines and is defined by a local structure ^ which we
take to be the set of germs of elements ofT. A function/is ^-compatible if all the germs
of/ are in ^. The group T is the set of all ^-compatible homeomorphisms. We reword
our second step above to say that (up to composition with (Ji) a homeomorphism of S1

that normalizes T is ^-compatible. Since T also defines ^, we reword this further to
say that (up to composition with (Ji) a conjugation that preserves ^ is by an element
that is ^-compatible. This last sentence states our rigidity property.
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Once rigidity is established, we can lift the local structure to R and derive results
about automorphisms of groups that are defined on R. In particular, we analyze the
automorphisms of another of Thompson's groups known as F that acts either on the
unit interval or R, depending on the representation chosen. (One representation of F
is the lift to R of all elements of T that fix 0.)

All the groups that we work with are homeomorphism groups that consist of
structure-compatible elements for various local structures on R or S1. In order to apply
a single rigidity result to all of these groups, we develop machinery that relates the local
structures. With this machinery, we can reduce the rigidity result to a much narrower
statement as follows. We formulate a notion of " generated by " that lets us regard the
elements of T as generators of the structure (S. Using this notion we show that ^ is
generated by the doubling map x h^ 2x on S1. See Section 3. Note that the doubling
map is ^-compatible. With this single generator for ^ in hand, we derive rigidity from
the following statement: If h is an orientation preserving homeomorphism from S1 to
itself that preserves the set Z[^], and if both h and h~1 conjugate the doubling map to
functions that are ^-compatible, then h must be ^-compatible. Since this statement
investigates conjugators of an expanding map, the use of techniques from dynamical
systems is natural at this point. We prove that such an h is ^-compatible by studying
functions that locally preserve certain structures on the union of those orbits of the
doubling map that end at its fixed point.

We discuss another interesting aspect of Thompson's group T. The cyclic group
of order two is also the outer automorphism group of Homeo+(S1), the full group of
orientation preserving homeomorphisms of S1. Thus T, a countable group, is imitating
the behavior of a larger group. This coincidence is not isolated since both T and
Homeo^(S1) are simple. (The group T is finitely presented, and was among the first
examples of finitely presented, infinite, simple groups. See [7].) Also, on Page 188 of [13]
are remarks that the cohomology of T imitates that of larger groups.

Having proofs that two objects share a property makes one curious about the
proofs. The more identical the proofs, the more it is likely that one object is revealing
secrets about the other. (The proofs that T and Homeo+(S1) are simple can be made
identical until the last step where it must be shown the commutator subgroup contains
all elements that fix sets with non-empty interior. The known proofs of the last step
are quite different.) This idea has affected our choice of technique. The results that
we use from ordered group theory are quite general. To apply them to Thompson's
groups we only need properties (high levels of transitivity on a dense subset) that the
groups share with larger homeomorphism groups. In our use of dynamical systems
techniques, we have attempted to suppress purely algebraic properties of these groups
and again use only properties that they share with larger homeomorphism groups.
For example, the fact that these groups are finitely generated has been replaced in
Sections 3 and 4 by the more general fact that the relevant local structures are finitely
generated.
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There is a rather extensive literature on Thompson's groups and their generaliza-
tions. We give some references in Section 1. However, the only properties that we need
are the transitivity properties which we derive in Section 2.

We do not analyze some generalizations of Thompson's groups. For each integer
n^> 1, there is a group F^ that acts on R of which Fg is F. For integers n and r with
1 ̂  r < n, there is a group T^ y that acts on the circle of which Tg ^ is T. Among the
properties that distinguish these groups from one another is the fact that elements of F^
and T^ y all have slopes that are powers of n. We mention in Section 1 that our results
do not hold when n is greater than 2.

There is also a family of groups G^ y that act on the Cantor set that generalize
another of Thompson's groups (often referred to as G == G^ i) that we have not mentioned
above. We have no analysis of the automorphisms of any G^ y.

The investigations that led to this paper were started while the author was visiting
the Institut des Hautes Etudes Scientifiques. The author wishes to extend the warmest
thanks to that institution for its support and hospitality.

1. Statements, history and outline

1 . 1 . Definitions and statements

We wish to describe certain homeomorphisms of the real line R and the circle
S1 == R/Z. With this parametrization in place, we can discuss linearity, piecewise linearity
and slope of functions on S1 and the rationality of points in S1 exactly as we would on R.

Let Z[y be the set of ^26 in R or S1 where a and b are in Z. Let PLg(R) denote
the set of homeomorphisms f from R to itself satisfying:
(1)/is piecewise linear;
(2) f is orientation preserving;
(3) all slopes off are integral powers of 2;
(4) the <( breaks " of/ (discontinuities of/') are in a discrete subset of Z[^]; and
(5) /(ZED) c: Z[i].

It is easy to verify that every/e PL2(R) satisfies/(Z[i]) = Z[^] and that PLa(R) is
closed under composition and inversion and is thus a group. The term <( break " appears
in [8] where certain PL homeomorphisms groups of R are proven simple.

We are interested in various subgroups of PLg(R) and groups on the circle S1

that are related to PL^R). Given a homeomorphism h from a topological space X to
itself, we define the support of/ to be the set of points x e X for which f{x) =(= x. We
define BPLg(R) to be the elements of PLg(R) whose support is a bounded subset of R,
and we refer to the elements ofBPLg(R) as the elements ofPLg(R) with bounded support.

We let F be those elements/of PLa(R) that are translations by integers near ± oo
in that there are integers i andj and a real M so that/(A:) = x + i for all x > \ M [ and
f{x) == x +j for all x< — | M|. We have BPL2(R) c F. (A fact not needed in this



THE CHAMELEON GROUPS 9

paper is that F is isomorphic to the elements of PL^R) with support in the unit inter-
val [0, I], The isomorphism can be achieved as a conjugation by a suitably chosen
PL homeomorphism (with infinitely many breaks) from the open unit interval to the
real line.)

We let T be those homeomorphisms from S1 to itself that satisfy (1)-(5) above.
We also consider elementary extensions of these groups. If we replace (2) with

(2') f is orientation preserving or orientation reversing,

then we get groups PLg(R) and T that respectively contain PLg(R) and T as subgroups
of index 2.

At this point we have defined the largest and smallest objects that we will look at.
Our results will be about all groups G for which BPL^R) c G c PJL^R) or T c G c T.
This includes two groups on S1 and infinitely many on R. Our < c smallest " groups are
BPL^R) and T since, as we will see in Section 2, they have all the transitivity properties
that we will need.

We are interested in automorphisms of the objects that we have defined.
We get certain automorphisms by conjugation. Let G be a group for which
BPLa(R) c G c PL2(R). We let Homeo(R) to be the set of all self homeomorphisms
ofR and define N(G), the normalizer ofG in Homeo(R), to be the set of all h e Homeo(R)
for which hGh~~1 = G. For G with T c G s T, we define N(G) similarly with respect
to Homeo(S1). We have a homomorphism 0 : N(G) -> Aut(G) where for an A e N(G),
we have (<1)(A))/== hfh~1. Our main result follows.

Theorem 1. — Let G be a group for which BPL2(R) c G c PÎ R) or T c G c T.
Then
(i) 0 : N(G) -> Aut(G) is an isomorphism,
(ii) N(G) c PLa(R) or N(G) c T whichever applies, ^
(iii) the containment in (ii) is equality whenever G is one ofWL^VL), PLa(R), PLa(R), T, T, and
(iv) ifN^(F) represents the index 2 subgroup of N(F) of orientation preserving elements, then

there is a short exact sequence

1 ->F ^N+(F) ->T x T->1.

Remark. — The appearance of T X T in (iv) above is easy to explain. Elements
ofF are translations by integers near ± oo. Thus near each of — oo and + oo, elements ofF
commute with functions that are lifts of homeomorphism of S1. Those homeomorphisms
of S1 that lift to PLa(R) are elements of T.

We give the main intermediate result. Any continuous function from S1 to itself
satisfying (1)-(5) in the definitions of PLa(R) and T will be called r-compatible. Let
Vg^) = 2x. If we regard this as a function on S1 then it is ^-compatible.

Theorem 2. — Let h: S1 -> S1 be an orientation preserving homeomorphism for which
[̂U) == ̂ i]- Assume that h^h~1 and h~~1 ̂ h are ^-compatible. Then h is PL.
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It turns out that h is ^-compatible, but this is not known until Theorem 1 is
proven. The proof of Theorem 1 from Theorem 2 will be given in Section 5. The proof
of Theorem 2 occupies Part III. A separate statement of a rigidity property is deferred
to Section 5. See Theorem 5.2.

There are natural parallels of the definitions in this section to groups whose elements
have slopes that are integral powers of a fixed integer n and breaks at elements of Z[^].
It turns out that Theorem 2 fails spectacularly when n is greater than 2. This results
in the failure of items (ii), (iii) and (iv) of Theorem 1 for the parallels ofF, BPLa(R),
PLg(R) and T for n > 2. Details will appear elsewhere.

1.2. Outline of the paper

There have been many facts discovered about the groups that we consider.
However the only properties that we need are the transitivity properties. These are
presented in Section 2.

Conclusion (i) of Theorem 1 follows from the transitivity properties and a result
in the theory of ordered permutation groups due to McCleary and Rubin [19]. This
also appears in Section 2. Once (i) of Theorem 1 is proven, we are reduced to the study
of normalizers rather than automorphisms.

We consider groups of homeomorphisms defined on various domains. One of our
tasks is to reduce the scope of the investigation by showing that all the normalizers that
we wish to study are locally like certain conjugators of a very small set of maps. We
build some general machinery for this in Section 3 that applies to groups of homeo-
morphisms that are defined by local properties. Section 4 applies this to the Thompson
groups where we identify the small set of maps as the map Vg on the circle S1.

In Section 5, we show that all PL normalizers can be analyzed. From the results
of Section 4, this gives the implication that all normalizers (and thus automorphisms)
are analyzed if a certain set of conjugators of the map Vg contains only PL homeo-
morphisms. This is done in the argument that Theorem 2 implies Theorem 1.

Part III contains the proof of Theorem 2. Here it must be shown that any homeo-
morphism h from S1 to itself for which Avg h~1 and h~~1 Vg h are ^"-compatible must be PL.
Since Vg is an expanding map, we extract information about h from the fact that Avg h~~1

is ^-compatible and derive a criterion that determines when ft is PL. We then do a
fairly direct calculation of h~1 Vg h and derive a criterion that determines when h~1 Vg h
is PL. We then show that h must be PL whenever h~1 Vg h ls PL.

Part IV contains examples that justify hypotheses and phases of the arguments.

1.3. Prior and related work

Some unpublished work by others on the automorphisms of Thompson's groups
has been available to the author. All have made the observation in Section 5 that the
main problem is to prove that normalizers are PL. Also, all have made the observation
not needed or mentioned in this paper that a normalizer that is PL on some open interval
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must be PL. A preprint version [12] of [13] that considered the question of automor-
phisms gave us the idea used in Part III of studying Markov partitions for the conjugates
of the maps Vg- The author is also indebted to Dennis Sullivan for suggesting that it
might be useful to look at the non-linearity of the conjugates of the maps v^. Conver-
sations with Fernando Guzman were very helpful in simplifying the presentation in
Part III.

The most extensive work on the material considered in this paper is the unpublished
notes [1] of Bieri and Strebel. (A very small sampling of material from [1] is given in
an appendix to [23].) The overlap between [1] and the current paper outside of Part III
is large. Section 2 of the current paper gives a special case of the analysis in [I], and
Sections 3, 4 and 5 generalize and repackage ideas in [1]. The theorem of [19] that
we quote in Section 2 is a generalization of a theorem in [1] which applies to R which
in turn is a generalization of a theorem in [18] which applies to more transitive actions.
Most of the examples in Part IV have their equivalents in [1] but the machinery we
use to build the examples is different and the properties are therefore easier to verify.
Items from Part III found in [1] include a formula that gives h from AvgA"1 and an
invariant based on summing break values (which are defined below in Section 7).
Missing from [1] is most of the analysis of Part III.

We state two results from [1] that complement the results of the current paper.
Considered in [1] are groups G(I; A, P) of all orientation preserving, PL self homeo-
morphisms of an interval I in R with slopes in a multiplicative subgroup P of the positive
reals and breaks in a finite subset of an additive ZP module A in R (with action coming
from multiplication in R). Also considered is the subgroup B(I; A, P) of those elements
ofG(I$ A, P) with support in some compact subset of the interior of I. It is proven in [1]
that if G is a group with B(I; A, P) c G c G(I; A, P) where P is not cyclic, then all
automorphisms of G are realized as conjugations by PL self homeomorphisms of I.
This result uses the density of such a P in the positive reals. It is also proven in [1] that
automorphisms of G(I;A,P) are realized by PL self homeomorphisms of I if I is
unbounded and by PL self homeomorphisms of I with finitely many breaks if I = R.
This result uses the fact that restriction to an unbounded end gives a surjection onto
a group of affine functions. The structures of the automorphism groups are also examined
in [1].

The result, Theorem 2 3, that we use from [19] realizes automorphisms as conju-
gations. An earlier version of this result is found in [18], and is used there to analyze
the automorphism groups of other homeomorphism groups. It is shown that the full
group of PL homeomorphisms on R has trivial outer automorphism groups as does the
group of PL homeomorphisms on R with finitely many breaks and also the largest group
of homeomorphisms of R all of whose elements are (not necessarily continuously) diffe-
rentiable. See [18] for more details and older references. A special case of Theorem 2.3
for Thompson's group T appears in [13]. The proof in [13] makes use of algebraic
properties of T including its simplicity.
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1.4. Other literature on Thompsons groups

The literature on Thompson's groups is very scattered. Because of this, many
letters from different alphabets have been used to refer to Thompson's groups. Thompson's
groups also admit a wide variety of representations, so the difficulty of recognition extends
beyond the multiplicity of notation. We will not give a complete history, we will not
sort out the notation, and we will not list all the representations. We will try to give
enough references to enable the reader to get to the literature on the various topics in
which these groups have appeared.

The papers [3] and [7] relate some of the representations, give keys to some of
the notation used, and give brief histories. For relations with the word problem and
for the early history of Thompson's groups see [20]. The connection to infinite simple
groups is discussed in [3] and more recently in [22]. See also [23].

Thompson's group F was rediscovered (by Dydak and Mine and also independently
by Freyd and Heller) in connection with questions in homotopy/shape theory. This
is discussed in [10], [6] and [11]. It is in this topic that the universal algebraic properties
of the groups are derived and exploited. The final paper [17] on the homotopy question
is the first to investigate the homological properties of one of Thompson's groups. The
paper [6] is the start of a systematic investigation of the (co)homology properties of
Thompson's groups and their generalizations. More recent papers are [3], [4], [5],
[13], [23] and [9]. The (co)homology of structures resembling those discussed in Section 3
are investigated in [14]. An acyclic extension of the infinite braid group by BPL^R)
is constructed in [16].

The paper [13] considers the group T from a dynamic point of view.
In analysis, the existence of Thompson's group F demonstrates that either there

is a non-amenable finitely presented group with no free subgroup on two generators
or there is a finitely presented amenable group that is not elementary amenable. This
is discussed in [7] where it is shown that F is not elementary amenable and in [2] and [7]
where it is shown that F contains no free subgroup on two generators. The paper [7]
also contains a version of Thompson's original proof that T is simple and a proof of
Thurston's observations that T and F are isomorphic to groups of piecewise projective
homeomorphisms on the circle and the interval respectively. The projective aspects of T
are also discussed in [15].

2. Transitivity properties of Thompson's groups

Lemma 2.1. — Let x^ < x^ < ... < ̂  and y^ <j^ < . . . <j^ he elements of Z[^].
Then there is ^/eBPLa(R) so thatf{x,) =y,for all i with \^ i^k.

Remark. — We refer to the property in the lemma by saying that BPL^R) acts order
^-transitively or o-^-transitively on Z[y for all k. Any G with BPLg(R) c G c PJL^R),
is also o-^-transitive on Z[^] for all A.
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Proof. — By adding an extra point from Z[^] to each sequence sufficiently far
below x^ andj/i and another from Z[y sufficiently far above x^ andj^, we can assume
that x^ ==j^ and that Xj, ==^. If for each i with 1 < i < k, we find a homeomorphism from
[^, ^_^J to [j^oji+i] that satisfies the local properties required of functions in PI^R),
then we can piece these functions together with the identity on (— oo, x-^] u [^, oo)
to get the required function. Thus it suffices to consider four points a < 6, c < d in Z[^]
and build a homeomorphism from [a, b] to [c, d] that satisfies the properties of functions
in PI^R).

Since all four points are in Z[^], there is an integral power of 2 that evenly divides
b — a and d — c. Thus we can divide the intervals [a, b] and [c, d] into subintervals
of length an integral power of 2. If the number of intervals is not the same for [a, b]
and [c, d], then we can increase the number of intervals for one of them as much as
we want by repeatedly subdividing random subintervals into 2 equally spaced smaller
intervals. This preserves the property that the lengths of all the intervals are a (perhaps
varying) integral power of 2. Once the number of subintervals in [a, b] and [c, d] are
the same, then a function can be built to map each interval in the subdivision of [a, b]
affinely to the corresponding interval in the subdivision of [c, d].

The action is not A-transitive on all of R. However, the set Z[^] is dense in R,
so we get close. If I and J are two closed intervals in R, then we write I < J if every
point in I is less than every point in J. We say that a group acting on R is acting approxi-
mately o-^-transidvely on R if whenever points x^ < x^ < . . . < x^ and closed intervals
Ii < Igs < ... < Ijk with non-empty interiors are given in R then there is an element
of the group that takes each ^ into 1 .̂

Corollary 2.1 A. — Let G be a group with BPL^R) c G c PJL^R). Then G acts
approximately o-k-transitively on R for all k.

On the circle there is the problem of not having a linear order. This is solved by
referring to the counterclockwise orientation on S1. We use the same terminology as
on R and let context determine which is in use. We say that a group acting on S1 is
acting approximately o-A-transitively on S1 if whenever different points ^1,^2, . .., x^
in S1 arranged in counterclockwise order on S1 in the order listed, and pairwise disjoint
closed intervals with non-empty interiors I^, Ig, .. ., 1̂  in S1 arranged in counterclockwise
order on S1 in the order listed are given, then there is an element of the group that takes
each ^ into 1^. Since functions in T lift to functions in PL^R) and since functions
in PL^R) can be built in pieces, we leave it as an easy exercise for the reader to verify
the following.

Lemma 2.2. The group T acts approximately o-k-transitively on S1 for all k.

We can now show that the automorphisms of the groups that we consider are all
realized as conjugations by homeomorphisms. We say that a homeomorphism of S1
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has bounded support if it fixes some open interval. All of the work is in the following
theorem from [19].

Theorem 2.3 (' McCleary-Rubin). — Let G act on R or S1 by homeomorphisms. Assume
that G contains a non-identity element of bounded support. If G acts on R, then assume that the
action is approximately o-2-transitive, and if G acts on S1, then assume that the action is approxi-
mately o-3-transitive. Then for each automorphism a of Gy there is a unique self homeomorphism h
ofR or S1 (whichever is appropriate) so that oi{f) == hfh~1 for every f E G.

Proofof(i) of Theorem 1. — The fact that G satisfies the hypotheses of Theorem 2.3
follows from the other results in this section. The existence and uniqueness statements
in Theorem 2.3 show that 0 is one to one and onto.

PART II. A REDUCTION

3. Germs, half germs, germ functions and germ generators

We give the facts that motivate this section. There are local criteria on R and S1

that elements of PL^R), T and related groups must satisfy. The groups PLa(R) and T
consist of all elements that satisfy the criteria. The local criteria on R and S1 are highly
related. The local criteria can be stated in terms of matching a simple set of functions
(affine) with sudden changes allowed on a given subset. The simple set of functions
has a very small number of generators.

This section exploits the above observations and sets up machinery that will lead
to two simplifications in the next section. There we show first that an analysis of norma-
lizers on R will follow from an analysis of normalizers on S1, and second that this analysis
will follow from a study of conjugators of one function on S1.

Let X be a topological space. LetJ^(X) be the set of homeomorphisms from open
sets in X to open sets in X. For each x andj/ in X, let ^(X)^ y be the set of elements
ofJf(X) that take x toj\ Let ^{X)^y be the set of germs at x of the elements ofJf(X)^.
That is ^(X)^ y is the set of equivalence classes in J^(X)^y in which two elements are
related if they agree on a neighborhood of x.

We can compose germs in that elements of ^(X)a, y compose with those of ^(X)y ̂
to give elements of ^(X)^. Also, each ^(X)^ contains the germ of the identity. If
we regard ^(X) as a function defined on X X X, then we have that ^(X) is a category
whose objects are the elements of X and whose morphism sets are the sets ^(X)g; y .
Each element in ^(X)g; y has an inverse in ^(X)y ̂  so that the two possible compositions
give the identities of ^(X)g; ̂  and ^(X)y y . Thus all morphisms are isomorphisms and
^(X) is a groupoid. We will deal with substructures of this groupoid. We will have
no need to consider topological groupoids.

Let ^ be a function on X x X written so that ^ y represents the value of ^
at (x,jy) and assume that for each (x^y) e X X X we have ̂  y c ^(X)g; y . If we further
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assume that ^ is a groupoid, then we call ^ a groupoid of invertible germs on X. We
will usually omit the word invertible. (It is standard to arrive at a groupoid of germs
from a pseudogroup — here, the set of ^-compatible maps defined below. It is customary
to put extra hypotheses on the pseudogroup so that it is in turn derivable from a groupoid
of germs. See for example [21].)

We say that/: U -> X, where U is an open subset of X, is ^-compatible at x e U
if there is a g representing a class in ^a?,/(a;) ^at agrees with / on some neighborhood
of A?. We say that/is ^-compatible if it is ^-compatible at x for each x e U. We let F(^)
be the set of all ^-compatible functions, we let H(^) be the set of all ^-compatible
homeomorphisms from X to X, and we let O(^) be the orbits of F(^). We have that
O(^) is just the set of equivalence classes in which two points x andj/ are related when
^ y is not empty. Note that every element of F(^) is a local homeomorphism in that
every point in its domain has an open neighborhood that is carried homeomorphically
onto an open set in X.

Note that we have not made enough assumptions to guarantee that H(^) is not
empty. This can be fixed by requiring that each ^S^ be non-empty. This will mean
that ^ ^ contains at least the germ of the identity function and this will make the
identity function on X an element of F(^) and thus H(^). Equivalently we could
require that the identity function on X be in F(^). When H(^) contains the identity
function on X, we will say that the groupoid ^ contains the identity.

To imitate the structure of elements of PLg(R), we split germs in half. Let ^ be
a groupoid of germs on R. A function/taking x to y in R, is ^-compatible at x if there
is an c > 0 so that/and some representative in ̂  y agree on [x, x + e) and/ and some
representative in ^ ,y agree on {x — e, x\. If A is a union of orbits in O(^), then we
say that a local homeomorphism/: U ->R is (^; A)-compatible if/is ^-compatible
for all x e U — A and if/ is ^-compatible for each x e A. The assumption that / is
a local homeomorphism prevents combining an increasing germ and a decreasing germ
from ^/(a,). We denote the groupoid of germs of all (^; A)-compatible functions by
(^; A). The constructions in this paragraph can be compared to Paragraph 1.6 in [14].

We now consider the circle S1 and its covering map, the projection R -> R/Z.
If ^ is a groupoid of germs on S1, then we can lift ^ to a groupoid of germs on R. One
way to define this is to let 8ft be the set of germs of the covering projection R -> R/Z
and let 8ft~1 be the inverses of the elements of 8ft. Then the lift of ^ to R is the set of
all allowable compositions in 8ft~^ €S8ft.

We can also go the other way. Let ^ be a groupoid of germs on R, and let s : R -> R
be defined by s{x) = x + 1- We say that ^ is ^-invariant if the germ of^ a^"^ at x + p
is in ^+p , y + g for every germ a in ̂  y, every x and y in R, and every p and q in Z.
If ^ contains the identity, then the j-invariance of ^ is equivalent to the requirement
that s be in H(^). This is seen by noting that the germ ofs sit x is the germ of.y1 oj° at x
where a is the germ of the identity at x. Assuming that ^ is ^-invariant, we can now
let the projection of ^ onto S1 be the set of all allowable compositions in 8ft<S8ft~^.
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We see how this relates to PLg(R) and T. We let

Aff^R) ^ { x ^ y x + b \ k e Z , b e Z[i] }.

We let ^(R) denote the groupoid of germs of Aff^R). Since s(x) == x + 1 is
in Affa(R), we let ^(S1) be the projection of ^(R) onto S1. Now

(3.1) H«,(R); ZR]) = PL,(R) and H«,(S1); Z[i]) == T.

We now consider how little information is needed to specify a set of germs. Let
X be a topological space. Let ^ be a collection of local homeomorphisms defined on
open subsets of X. Note that the set of germs of ^ is a subset of the collection of germs
in ^(X). Thus compositions of germs of y and inverses of germs of ^ exist in ^(X).
The collection of finite (allowable) compositions of germs from SF and their inverses
is a groupoid and is thus the smallest groupoid that contains the germs of ̂ . We refer
to this groupoid as the groupoid of germs generated by J^. The following is clear.

Lemma 3.1. — Let X be a topological space and let y and e î be collections of local
homeomorphisms defined on open subsets of X.

(i) Ify^ ̂ i, then the groupoid of germs generated by 3^ is contained in the groupoid of germs
generated by e î.

(ii) If y^ is the set of finite compositions of elements of ̂  or if ̂  is a group and 3^ is a set
of generators of'^, then the groupoid of germs generated by ̂  equals the groupoid of germs
generated by .̂

We give generators for the structures that we use.

Lemma 3.2. — The functions d{x) = 2x and s(x) == x + 1 on R generate ^/^(K) and
the function VgW == ^x on S1 generates ^^(S1).

Proof. — Note that Affg(R) is generated by d(x) == 2x and s{x) == x + 1- This
is seen by noting that s conjugated by powers of d gives all translations by integral powers
of 2. Thus d and s generate translations by all elements ofZ[^]. Powers of d can carry 0
to 0 with slope any integral power of 2. Now the action of any element of AfF^R) on
a neighborhood of 0 can be imitated by composing a power of d with a translation.
This gives the first claim.

All germs in ^^(S1) are projections of germs from J3^(R). These in turn are
compositions of germs of d and s and their inverses. The projection of germs of d are
germs ofvg and the projection of germs ofs are trivial on S1. Thus every germ in j^(S1)
is a composition of germs of Vg and their inverses.

The next lemma needs a definition. If ^ is a groupoid of germs on a topological
space X, then we say that a homeomorphism h: X -> X preserves ^ under conjugation
if hfh~1 is in F(^) for all/eF(^). This implies AH(^) h~1 <= H(^).
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Lemma 3.3 (Consistency). — Let S^ he a family of local homeomorphisms on a topological
space X and let ^ be the groupoid of germs generated by y. Let h: X -> X be a homeomorphism
and assume that h conjugates each element of 3^ into F(^). Then h preserves ^ under conjugation.
If in addition^ X is one ofS1 or R, A is a union of orbits in O(^), h (A) ^ A, and h conjugates
each element of 3F into F(^; A), then h preserves (^; A) under conjugation.

Proof. — We give the argument that applies when X is R or S1, and let the reader
omit the irrelevant parts for the simpler case. Let/be in F(^; A). If A; ^ A, then h"1^) ^ A
and the germ of/at A"^) is a composition of a finite number of germs or their inverses
from elements ofe^l If A; e A, then h~l(x) might be in A or not. If not, then the previous
statement about/applies. If A"1^) eA, then the two half germs of/at h~l(x) are
compositions of corresponding half germs from y. (Which half germ of each factor
goes into each half germ of/ depends on the order in which the factors are orientation
reversing or preserving.) The conjugate of the composition is the composition of the
conjugates. Since the conjugate of each factor is known to have its germ or two half
germs in (^; A), we have that hfh~1 is in F(^; A).

The notation (^; A) refers not only to a groupoid, but also its construction. For
the remainder of the section, we will not be concerned with the construction of groupoids
and the notation (^; A) will not be needed.

The hypothesis of the next corollary is implied by a stronger condition that we
will introduce later.

Corollary 3.3.1. — Let ^ be a groupoid of germs on a topological space X and assume
that H(^) generates ^. If h: X ->X is a homeomorphism for which AH(^) h~1 c H(^),
then h preserves ^S under conjugation.

If ^ is a groupoid of germs, then ^3, is the set of germs at x of those elements
ofF(^) that have x as a fixed point. The following standard observation will be needed
in several places.

Lemma 3.4. — Let X be a topological space and let ^ be a groupoid of germs on X that
contains the identity. Then each ̂ 3; is a group. Ifh: X -> X is a homeomorphism and h and h~1

preserve ^ under conjugation^ then the function from ^^ to ^^ ̂  taking each a e ̂  ^ to
the germ of hv.h~1 at h(x) is an isomorphism.

For example, with ^g(R) as defined above, then (J^(R); Z[^])g; ^ is isomorphic
to Z X Z if x e Z[^], to Z if x e % — Z[^], and to { 1 } if x ^ %. Thus any homeo-
morphism A : R - > R that normalizes F(e^2(R); Z[^]) must preserve the three sets,
Z[iL d-Z[i] andR-%.

Let X be a topological space, let ^ be a groupoid of germs on X, and let H(X)
be the set of self homeomorphisms ofX. We say that g e H(X) is obtained from/e H(X)
by ^-rearrangement if for every x e X, the germ of g at x is that of o/(3 where a and (B
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are germs in ^ that vary with x. Note that this relation does not seem to be symmetric.
This relation becomes more symmetric when we consider normalizers. We let N(^) be
the set of h eH(X) so that both h and h~1 preserve ^ under conjugation. Note that
H(^) is a normal subgroup ofN(^).

Lemma 3.5. (Rearrangement). — Let X be a topological space and let ^ be a groupoid
of germs on X that contains the identity. If f and g in H(X) are in the same left coset of'H.(^)
in H(X) or the same right coset (/H(^) in H(X), then each is a ^-rearrangement of the other.
IfhisinN^)^ then any ^-rearrangement ofh is in N(^) and elements o/*N(^) are in the same
coset </H(^) in N(^) if and only if they are ^-rearrangements of each other.

Proof. — If g e/H(^), then g ==fh with h e H(^). This and a similar observation
for right cosets finishes the first claim. If h is in N(^), g is a ^-rearrangement of h and/
is in F(^), then the composition of germs

gfg-^wf^hyr1

shows that gfg~1 is in F(^) as well. We know that elements of the same coset ofH(^)
in N(^) are ^-rearrangements of each other. Now it g and h in N(^) satisfy g = aA|3
at each x for some germs a and (B that vary with x, then gh~~1 = aA(BA~1 at each x, and
h e N(^) implies that gh~1 e F(^) and thus in H(^), and ,? and h are in the same coset
of H(^) in N(^).

We borrow a property from the study of foliations. Let ^ be a groupoid of germs
on R. We say that ^ is interpolating if for every pair of germs a e ̂  ^ and (3 e ̂ ^
with both a and (3 increasing, with a< c and with b < d, there is anyeF(^) with a
the germ of/at a and [B the germ of/at <;. This is condition (y) in [21] and is called
germ-connected in [14].

Lemma 3.6. — Let 9 be an interpolating groupoid of germs on R that contains the identity.
Then for every pair of germs a e ̂  ^ and (3 e ̂  ̂  w^A 6^A a <W (3 increasing^ with a < c
and with b < d, there is an h e H(^) z^A a the germ of h at a and (B the germ of h at c.

Proof. — There is an/e F(^) with a the germ of/at a and (B the germ of/at c.
For some x with x < a and ^ < b there is a g^ e F(^) with a the germ ofg^ at fl and with
the germ of g-^ at x the germ of the identity. For some y with y> c and j/ > d there is
a g^ e F(^) with (B the germ of g^ at c and with the germ of g^ atj/ the germ of the identity.
Now let

t t ^ x,
. gi(t) x ̂  t^ a,

h(t} = = < / ^ ) a ^ t ^ b ,
g^(t} b ^ t ^ y ,
t y ^ t .
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Corollary 3.6.1. — If^ is an interpolating groupoid of germs on R that contains the identity^
then H(^) generates ^.

Lemma 3.7 (Reduction). — Let ^S he an interpolating groupoid of germs on R that contains
the identity and is s-invariant with respect to the map s(x) = x + !• Let ^S' he the projection of ̂
on S1. Then the projection from R to S1 = R/Z induces an isomorphism from N(^)/H(^) to
N(^')/H(^').

Proof. — Let h be in N(^). We wish to find a function g in the same coset of H(^)
in N(^) so that g is a lift of a homeomorphism of S1. Note that itg is increasing, this means
that we want g to commute with s. However, ifg is decreasing, we want^ to satisfy g = sgs.

We know that hsh~1 is in H(^), as are shs~1 h~1 and shsh~1. Also, shs~~1 h~1 and
.yfoA"1 are increasing no matter what the behavior of h is.

If A is increasing, then A(0) < A(l) and we let a == h{0) and c = A(l) . Now
(shs~1 h~1) (A(l)) = A(0) + 1 and if we let h = A(0) and d = A(0) + 1, then we have
a < c and b < d. There is any in H(^) whose germ at A(0) is that of the identity and
whose germ at A(l) is that of shs~1 h~~1. Nowj% takes 0 to h{0) with the germ of A at 0
and takes 1 to A(0) + 1 with the germ of shs~1 at 1. Since the germ of {fh) at 1 is the
germ of s(fh) s~1 at 1, we can build a function g in H(^) that agrees withfh on [0, 1]
and that commutes with s on all ofR. Specifically, g on [z, i + 1] is defined to be s\fh) s~\
Slightly to the left ofz, the behavior ofg is that of^'^/A) j"^1 with the relevant part
offh being that in a small neighborhood of 1. But here we have/A == s{fh) s~1 so the
behavior ofg to the left of i is also that of s\fh) s~^ which agrees with the behavior
of g to the right of i. Thus g is ^-compatible at each i. It is also ^-compatible in the
interior of each [z, ? + 1] since ^ is j-invariant.

If h is decreasing, then /r(l) < A(0) and we let a == A(l ) and <: = A(0). Now
(j^A-1) (A(0)) = A(l ) + 1 and if we let b == h(\) and ^ = A(l) + 1, then we have
a < c and b < d. There is any in H(^) whose germ at A( l ) is that of the identity and
whose germ at A(0) is that of shsh~1. Now/A takes 1 to h{\) with the germ of h at 1 and
takes 0 to A( l ) + 1 with the germ of shs at 0. The rest of the argument is similar to the
paragraph above except we define g on [— z, — {i — 1)] to be s'fs' and get a decreasing
function that satisfies sgs = g.

In both cases, we get a function that defines a homeomorphism on S1 = R/Z.
This function is in the same coset as h since it is a ^-rearrangement. We must show
that another function g ' in the same coset as h that has sg' s~1 = g ' if g ' is increasing
or sg' s = g ' if g ' is decreasing has the projection of g ' to S1 in the same coset as the
projection of g. We know that g~1 g ' is in H(^). Now g ' is increasing if and only if g
and h are increasing. Ifg and g ' are increasing, then g~1 g ' == Jg"1 s~1 sg' s~1 == sg~1 g ' s~1

and ^~l,g^' projects to S1 and shows that the projection ofg and g ' are in the same coset
of H(^'). If h and g ' are decreasing, then g~1 g ' = j~1 g~1 s~1 sg' s == s~1 g~1 g s and
the same conclusion holds.
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The map clearly defines a homomorphism. We want to show that the function
is one to one and onto. It is onto by lifting representatives ofN(^')/H(^') to R. Such
lifts are in N(^) since ^S is j-invariant. It is one to one, since if A projects to a ^'-compatible
homeomorphism of S1, then h is ^-compatible.

4. Normalizers and germs of Thompson's groups

First we wish to show that all normalizers that we wish to study can be related
to normalizers of T. Then we wish to show that it suffices to study conjugators of Vg.
We first need a consequence of Lemma 2.1.

Lemma 4.1. — Given yePL^R) and — oo < a < 6 < oo, there is an element g in
BPL2(R) that agrees with f on \a,b}.

Proof. — By decreasing a and increasing b we can assume that a and b are in Z[|],
By the hypothesis onfwe know that f (a) sindf^b) are in Z[^]. By Lemma 2.15 there
is a g-^ in BPLg(R) that carries a tof{a) and b tof(b). Now we let g agree withy on [a, b]
and with g^ elsewhere.

Lemma 4.2. — Let G be a group for which BPL2(R) c G c PLa(R) or T c G c T.
Then N(G) c N(PL2(R)) or N(G) <= N(T) whichever applies.

Proof. — Conjugation preserves the properties of being orientation preserving and
having bounded support. This gives N(G) c N(BPLg(R)) or N(G) c N(T). Now
Lemma 4.1 implies that the germs of BPLg(R) are exactly the germs of PLg^R). This
shows that N(BPLg(R)) = N(PLg(R)).

We must relate N(PL2(R)) to N(T). Let ^ be the groupoid of germs generated
by the group T. This is consistent with the terminology ^-compatible used in Section 1.
Let 8ft be the groupoid of germs generated by the group PLa(R). These groupoids were
previously identified in Section 3 as (J^2(R);Z[^]) and (^(S1); Z[^]), but we will
stick with the simpler notation.

Lemma 4.3 (i) 8ft contains the identity, (ii) 8ft is s-invariant where s(x) = x + !• (iii) 8ft is
interpolating.

Proof. — We get (i) and (ii) from the fact that the identity and s are in
H(^) = PL^R). To see (iii) we let a < c and b < d where 8ft ̂  ^ and 8ft ̂  ̂  are non-empty.
Given a e^ ^ and (B ^8ft^^ we can get a < a' < c ' < c where a' and c' are in Z[^]
and [a, a'] is in the domain of some representative / of a and [c\ c] is in the domain
of some representative g of p. We can move a' close to a in Z[^] and c ' close to c in Z[^]
to guarantee f{a') < g ( c ' ) . We know that/and g preserve Z[y. Now Lemma 2.1 allows
us to fill the missing part on \a\ c ' ] .
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We recall the following:

Lemma 4.4. — The groupoid € is the projection of the groupoid S^ to S1.

Corollary 4.4.1. — (1) The projection from R to S1 == R/Z induces an isomorphism
N(^)/H(^) ^ N(r)/H(r). /^ particular, there is a non-PL normalizer of PL^R), if and
only if there is a non-PL normalizer ofT. (2) Let G be a group for which BPLg(R) ^ G s PL^R)
of T c G c T. If there is a non-PL normalizer of G, then there is a non-PL normalizer of T.

Proof. — Item (1) follows from Lemmas 3.7, 4.4 and 4.3. Item (2) follows from
Lemma 4.2 and item (1).

Note that ^ : S1 -> S1 defined by ^{x) = 2x is ^"-compatible.

Lemma 4.5. — Let G be a group for which BPL2(R) £ G c PLa(R) or T c G c T.
7/* ̂ r^ ^ a non-PL normalizer of G, ^72 ^r^ zj a non-PL homeomorphism h:S1 ->S1 for
which A(Z[y) == Z[^] and for which h^h~1 and A'SgA <m? ^-compatible.

Proof. — By Corollary 4.4.1, there is a non-PL normalizer A of T. From Lemma 3.4
and the remarks that follow, we get A(Z[iJ) == Z[^]. The function ^ is r-compadble
and T generates ^. Lemma 3.3 finishes the proof.

5. PL normalizers: Proof of Theorem 1 from Theorem 2

It is the goal of this section to prove Theorem 1 from Theorem 2. For the rest
of this section, we assume the truth of Theorem 2. From Lemma 4.5, we know the
following.

Lemma 5.1. — Let G be a group for which BPLg(R) c G c PJL^R) or BT c G c T.
Then every element in the normalizer of G is PL.

Proof of Theorem Ifrom Theorem 2. — Part (i) is proven in Section 2. From Lemma 4.2
and Corollary 4.4.1, we know that if we prove that N(PLa(R)) c PJL^R), then we
can conclude that N(G) c PLa(R) or N(G) <= T for the objects G covered in the
lemmas. This will prove Part (ii) of Theorem 1.

Let h be an element of N(PL2(R)). As argued in the proof of Lemma 4.5, we
know that A(Z[^]) = Z[^]. Given any interval on which h is affine, there are a pair
of elements of Z[^] in the interval whose distance apart is in integral power of 2. Since
the images of these two points are in Z[^], the distance between the images is in Z[y,
and the slope of h on the interval must have an integral power of 2 for the denominator.
The discussion also applies to h~1, and it follows that the slope is an integral power
of 2. If A has a break in R — Z[^], then a simple calculation with the chain rule shows
that conjugating a translation by a sufficiently small amount will produce a function
with a break in R — Z[y. This proves Part (ii) of Theorem 1.



22 MATTHEW G. BRIN

The proof of Part (iii) of Theorem 1 is one of checking that PLa(R) and T nor-
malize the groups listed. This is quite easy and is left to the reader.

We consider (iv) of Theorem 1. We know that N(F) c PIL^R). Let/be in N+(F),
the orientation preserving elements of N(F). The germ of F at — oo is isomorphic
to Z generated by translation to the right or left by 1. A normalizer must preserve
the germ at — oo and so must take a generator to a generator. (This is identical to the
concept discussed in Lemma 3.4.) An orientation preserving conjugator will take a
right translation to a right translation. Thus near — oo, an orientation preserving
normalizer commutes with translation to the right by 1. This forces f(x + 1) ==f(x) + 1
near — oo. Similarly, we getf{x + 1) =f{x) + 1 near + oo. Conversely, any/in PLg(R)
that satisfies f{x + 1) =f{x) + 1 near ± oo conjugates elements of F into F. Thus we
have characterized the elements ofN^.(F). Now by restricting an/eN^.(F) sufficiently
far to the left, we get a well defined element/_ ofT. The restriction of/near + oo gives
a well defined element/^, of T. The function /h-> (/_,/+) is a homomorphism into
T X T. The kernel consists of all elements of F. Now Lemma 2.1 shows that two
elements g^ and g^ of T will have the lift of g-^ near — oo and the lift of g^ near 4- oo
connectable into one function in PL^R). Thus the homomorphism is onto. This completes
the proof of Theorem 1.

The next rigidity statement is a rewording of parts of Theorem 1. Recall from
Section 3 that if ^ is a groupoid of germs on X, then a homeomorphism h: X -> X
preserves ^ under conjugation if hfh~1 is in F(^) for all/eF(^). We say that h nor-
malizes ^S if h and h~1 preserve ^ under conjugation.

Theorem 5.2. — If an orientation preserving homeomorphism h: R —» R normalizes ,̂
then h is ^-compatible. If an orientation preserving homeomorphism h: S^ -> S^ normalizes "̂,
then h is ^-compatible.

PART III. PROOF OF THEOREM 2

In this part we will prove:

Theorem 2. — Let h: S1 —> S1 be an orientation preserving homeomorphism for which
A(Z[^]) == Z[^]. Assume that h^^h~1 and h~1 »^h are ^T-compatible. Then h is PL.

Since any rotation by an element of Z[^] is a normalizer of T, we can compose h
by a rotation through — A(0) to get an element satisfying the hypotheses that fixes 0
and that is PL if and only if h is. Thus throughout the rest of this part, we assume
A(0) = 0. For the remainder of this part we will let g == h^^h~1.

We need one preliminary lemma which will have several important consequences.

Lemma 5.3. — The homeomorphism h is a normalizer of T.

Proof. — This follows from Lemma 3.2, from (3.1) and from Lemma 3.3.
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6. Markov partitions, structures and morphisms

Let 1̂  0< i< 2\ be the interval [i2~k, {i + 1) 2"^] on S1. For (K k< oo, let
P^ = {1^ | 0 ̂  i < y }. We call P a Markov partition for Vg of depth k. We treat the
subscripts of the intervals in P cyclically mod 2^. The action of Vg on I? ls to carry it
onto 1^-1 = 1̂  u I^+1. We let P = { Pfc | 0 ̂  k < oo } and we call P a Markov structure
for Vg. The endpoints EP^ of P^ are the endpoints of the intervals in P^. Note that
gpfc ^ ^p, fj^. ^n j > ̂  -p^g endpoints EP of P are the endpoints of all the P. We
have EP == Z[^] in S1.

LetJ?=A(I?), let Q^^IO^ i< 2'} and let Q,== { Q? | 0 ̂  k < oo }. Then
each (y is a Markov partition for g and Q is a Markov structure for g. The action of g
onj? is to carry it ontoj^-1 ==J^ u J^+r Since A(Z[^]) = Z[^], we have EQ= Z[i]
in S1. The breaks of g are a finite set of points in Z[^], so there is a smallest K so that
the breaks ofg are in EQ^. Thus the action ofg on each interval in Qf for^' ̂  K is affine.
We call K the stable level of Q^ for reasons that will become clear later.

A morphism ofP (or QJ of index d e Z, is a continuous functionyfrom a connected
open set in S1 to S1 so that for all j e Z with j ̂  0 and j + <f ^ 0 the function / carries
the endpoints of?3 (or Q?) in order to the endpoints of P3"^ (or Q?"^). The function v^
is a morphism of index — 1 of P and g is a morphism of index — 1 of Q^. We can invent
a notion of morphism from P to Q and note that this will make h an isomorphism from P
to Q. However, h will be the only morphism from P to Q that we will ever look at.
The next lemma is clear.

Lemma 6.1. — (1) A morphism is determined by its domain^ its index and its value on one
element in Z[^]. (2) Indices of morphisms add under composition.

A local morphism of P (or QJ is a continuous function f from S1 to itself so that
at every x in EP (or EQJ, there is an s > 0 so that f agrees with some morphism of P
(or QJ on [x, x + e) and agrees with (perhaps another) morphism ofP (or Q) on {x — e, x].
A piecewise morphism of P (or QJ is a continuous function/from S1 to itself for which
there are a finite number of closed intervals with endpoints in EP (or EQJ covering S1

so that f agrees with a morphism of P (or QJ on each interval.

Lemma 6.2. — The ^-compatible functions from S1 to itself are the piecewise morphisms
of P, and also are the piecewise morphisms of Q^.

Proof. — That the ^"-compatible functions from S1 to itself are the piecewise
morphisms of P is clear. That they are also the piecewise morphisms of Q^ follows
because h is an isomorphism from P to Q, and because, by Lemma 5.3, h normalizes T
and thus € ' .
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7. The calculus of break values

Given an element x of S1, we associate a measure of the change of slope of g that
occurs at x. It acts like a derivative, so we give it a notation that resembles g ' . We define

M=^
where ^(A;) represents the right derivative of g at x (the slope of g immediately to the
right ofx) and g_(x) represents the left derivative of g at x. Since g is PL, this is defined
for all x. We call g\x) the break value otg at A;. We use the logarithm to make the chain
rule additive in that if g^ and g^ are two PL functions, then

(7-1) tei o^)' W == ̂ W) + ̂ W.

This follows because left and right derivatives satisfy the usual chain rule. We use
log base 2 to make the numbers come out nicer — a fact that we will never use except
in examples. For those familiar with non-linearity, we can think of the break value as
the non-linearity concentrated at a point.

Some properties of the break value are as follows.

(7-2) ^(A:) = 0 if and only if g is affine in a neighborhood of x.

(7.3) WW-^gWx)).
i»0

This is just the sum of the break values of g at n consecutive points in an orbit starting
with x. Iff: S1 -> S1 is a PL homeomorphism, then

(7-*) (fgf-^W = -/V-i^)) + g\f-^(x)) +fb((gf-l) W), and

(7-5) (fgm/W = -f\x) + g\x) +f\g(x))

where (7.4) and (7.5) have been simplified by using (./'"^(/(A;)) = —f^x) which
follows from applying (7.1) to (V"1/)6^).

Since g is a PL function defined on S1, the sum of the break values of g once
around S1 must be zero. Since EQ? contains all the break points ofg as long as k ^ K,
we get

(7.6) S g\x) = 0 whenever k ̂  K.
asGEQ^

Lemma 7.1. — Ifb : S1 —^ Z is zero except on a finite set., if the sum of b{x) is 0 over S1,
and if d is a positive integer, then there is a unique, strictly increasing, PL h: S1 ->• S1 of
degree d that fixes 0 and that has h\x) == b(x) for all x e S1. If d == 1, then h~1 exists
and (A-1)6^^)) == - b[x).
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This is a (( converse " to (7.6) whose proof is elementary and left to the reader.
The point is to build the function h on [0, 1] starting with an arbitrary slope m at 0
and show that since A(l) is linear in w, there is a unique m that makes A(l) == d.

Lemma 7.2. — g\0) = 0 and ^'(0) == 2.

Proof. — From Lemma 5.3, we know that A is a normalizer of T. From Lemma 3.4,
we know that h induces an isomorphism from the group of germs ^o o of functions of T
with fixed points at 0 in S1 to the group of germs ^0,0- This group is isomorphic to
Z x Z and the two natural generators are (< slope 2 to the right of0" and (< slope 2 to
the left of 0 ". Conjugation by h keeps the (< behavior to the right9? separate from the
" behavior to the left " in that the germ to the right ofO of the conjugate is determined
only by the germ to the right of 0 of the conjugated function, and similarly for germs
to the left. Thus a germ to the right of 0 that represents " slope 2 to the right5? must be
carried to (( slope 2 to the right5? or <( slope 1/2 to the right ". However, conjugation
preserves the property of a fixed point being repelling. Thus <c slope 2 to the right " must
be carried to c< slope 2 to the right ". Similarly for the slopes to the left. We now note
that ^2 has slope 2 at its fixed point 0. Thus g has slope 2 at both sides of its fixed point 0.

We apply Lemma 7.2. For any x eZ[^] we have g^{x) == 0 for some N. Thus
every n ̂  N has g^x) = 0. Since ^(0) = 0, we get from (7.3) that WW is inde-
pendent of n as long as n ̂  N. We can now define a function S : Z[|] -> Z by

(7.7) SM= lim^M.
n-> oo

We can refer to it as the total iterated break value at x, and it is the sum of all the break
values in the forward orbit of x (including x) under g. The following fact about any x
andj^ in Z[^] is clear from these remarks:

(7.8) g\x) = g\y) => [(g^(x) = (^(jQ o S(^) == S(j/)].

We know that the set of breakpoints of g is contained in EQj^ where K is the stable level
for g. For x e Z[^], let \(a) be the smallest integer i for which x e EQ\ Now all x e Z[^j
with \(x) > K have g\x) = 0. If x e Z[i] has ^x) > K, then all ^(x) = 0 for
i < \{x) — K and we have

(7.9) ^(x) = S(^) where x ' = g^-^x) has X(^') = K.

Since EQ? is finite, there are only finitely many values that S(^) can achieve. The
property given in (7.9) is the reason for calling the level K the stable level.

Note that (7.7) and (7.3) imply that g\x) == ^(x) - 2(^)) for any x. Thus
Lemma 7.2 implies that gb is a coboundary on an appropriate complex. In smooth
settings, this is often enough to reach conclusions about the conjugating homeomorphism A.
We show in Example 1 of Part IV that this is not sufficient here.

We will need one consequence of (7.6).
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Lemma 7.3.

S 2W == 2 W.
X(a;)==K XOcXK

Proo/*. — The sum of S(^) over a set of all A; with \{x) a constant value i uses each
value of^(j») with X(j/) = i — j exactly 23 times. Thus each gb(Jy) with X(j/) = K — j
is used 2^ times by the left sum in the statement and 2'~1 + 23~2 + ... + 1 = 2s — 1
times by the right sum in the statement. Thus the difference of the two sums in the
statement is the sum in (7.6) for k = K which is 0.

8. Criteria for the piecewise linearity of h

We say that Qf has equal pairs if each pair of intervals 1̂  and I^+i has equal
lengths.

Lemma 8.1. — The following are equivalent:

(1) Q^ has equal pairs.
(2) Qf has equal pairs for a l l j ^ K.
(3) h is PL.
(4) The values of S(^) are equal for all x with \(x) === K.

proof. — (1 o 2) The set EQf4-1 equals g-^EQ^). Whenj^ K, the action of g
is affine on each interval of Qf and the spacing of the even-odd pairs is preserved
from Qf to Q?^1. The equivalence of 1 and 2 follows by induction.

(2 o 3) If h is PL, then the equal spacing of the endpoints of P is carried over
to equal spacings in sections of Q^. Conversely, if (2) holds, then intervals of Q^ are
evenly subdivided repeatedly to create intervals of Qf, j ̂  K. This creates equal spacings
that can only be carried back to the equal spacings of P by a PL h~1.

(3 => 4) If h is PL, then as in the proof of Theorem 1 from Theorem 2, we know
that h is ^-compatible and has all its breaks in Z[^]. Now for sufficiently large n, (7.5)
and the fact that Vg has no breaks gives

(8.1) SM === W(x) == (^-TO = - h\x) + 0 + h\0).

The finite number of breaks in h now implies that all but finitely many x have the same
value ^(0) for S(^). Now (7.9) shows that each value ofS( ) on the stable level appears
infinitely often at deeper levels. This yields 4.

(4 => 3) We reverse the process in the last argument by integration. Let S be
the constant value of S(A:) for \{x) = K. Let b(x) == S — S(A:) for all x eZ[i]. Note
that our hypothesis and (7.9) imply that b(x) == 0 for all but finitely many x eZf^j.
We want to argue that h is PL with all its break points in Z[^] and that ^{x) == b {h {x))
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for all x e Z[y. We will do this by building an A with these properties and then showing
that h must equal h. As in (7.6), we must also have

(8.2) S h\x) == S b(h(x)) == 0
»ez[fl «ez[fl

in order for this to work. Note that since h is a one to one correspondence from Z[^]
to itself, we can replace b{h(x)) with b{x) in (8.2).

We have b{x) == S — S(A:) and this is zero when \{x) ^ K. Thus

(8.3) S &M = S (S-SM).
a?eZ[i] X < K

But the 2s endpoints of 0s1 are divided into 2K~1 endpoints x with \(x) = K and
2K~1 endpoints x with X(^) < K. Thus the positive terms in (8.3) add to 2s-1 S. By
Lemma 7.3, the negative terms in (8.3) add to

- S 2M
X(a;) = K

and (8.3) adds to 0 since ^{x) = S for all 2K~1 endpoints x with X(;c) == K.
By Lemma 7.1, there is a PL, increasing, homeomorphism A : S1 -> S1 with

P(A;) == & (h (x)). If we let g = Av^A"1, then we can define S(;c) in analogy with S(;v).
As in (8.1), we get ^(h{x)) = ^(0) — P(^) or equivalently

W = P^-^O)) - ̂ (A-1^)) = ̂ (0) - 6W

= (S - S(0)) - (S - SM) = SM

since S(0) === 0. We recover g\x) as S(A;) — ^(g(x)) and ^(A:) as S(A?) — 2(^)), so
^b and gb are identical functions. Both g and ^ have degree 2 and fix 0, so by the unique-
ness feature of Lemma 7.1, g == g and h conjugates v^ to g. This makes A another iso-
morphism fixing 0 from P to Q and ~h == h.

9. Local morphisms of Q,

From Lemma 6.2, we know that every ^-compatible function from S1 to S1 is
a piecewise morphism of Q. We will prove Theorem 2 by showing that this is false
unless h is PL. To show that a function is not a piecewise morphism, we will show that
it " breaks " from one morphism to another infinitely often. We thus need to know how
to detect such breaks. The reason for the next lemma will become apparent by the
lemma that follows it.

Lemma 9.1. — Let/be a morphism of (^taking a e Z[i] to b. Then there are only finitely
many x eZ[i] with ^{x) =|= S(/(A;)).
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Proof. — Take x with \(x) > X(a) + K. From (7.9) we have 2(;t;) == S '̂̂  (;<•))
and we know that g^-^a) =0. If/ has index d, then X(/(^)) = X(^) + d and
X(A) = X(a) + a so X(/(^)) > X(^) + K. Thus S(/(^)) = ̂ (^"-^/(A;))) and
^(/(.))-K(^ _ o N^ ̂ (,)-K ̂ d ̂ (/(,»-K are morphisms of Q, of indices d, K - X(^)
and K - X(/(A;)) = K - (\[x) + d) respecdvely, so ^'/'•'"-K ̂ f and ^'•""-K are
morphisms of Qof equal indices that agree on a. By Lemma 6.1, they are equal and
S(.v) = S(/(;v)). There are now only finitely many x e Z[^] with X(A-) < X(a) + K.

£<TOwa 9.2. — Let f be a/fine on [a, b] s S1 with a e Z[j] ana let f^ be a morphism
of index d ofQ_on [a, b} that agrees with f on some [a, a + s). If f does not agree withfi on all
of [a, b], then the largest x in [a, b] for which f agrees with /i 072 [a, x] is the smallest
x e Z[i] n (a, b) for which ^{x) + S(/i(;»;)).

Proof. — Note that by Lemma 9.1, if there is an x eZ[^] n (a, b) for which
SM + S(/i(;v)), then there is a smallest.

For an interval A, let L(A) denote its length. For 2 consecutive intervals A and B
in some Q? (with A to the left ofB), let r(A, B) = loga(L(B)/L(A)). This gives a value
for each consecutive pair in Q". We have that the affine/will agree with the morphism f^
on [a,jy] if and only if for all Q? with k sufficiently large, the sequence of r values in Q^
starting with the interval pair to the right of a and ending with the interval pair to the
left ofjy equals the sequence of r values of the same length in Qk+d starting with the
interval pair to the right of/(a).

As in the proof of Lemma 9.1, with k large enough, there are powers g* and g>
ofg that are morphisms respectively from Q* and Q^ to Q? so that a and/(a) respec-
tively are carried to 0. Let A and B be consecutive intervals in Q* with common end-
point /. Let A' =/i(A), let B' =/i(B) and let f =f^t~). Note that g\\) = g\K'),
5*(B) = .?''(B') and g\t) = g^f). Since all the breaks ofg are in the endpoints of Q ,̂ the
actions ofg1 on A and B and of.?1 on A' and B' are affine. A trivial calculation shows that

r(A, B) + (^(f) = r(^(A),^(B)) = r(^(A'), ̂ -(B'))

=r(A',B')+(^y(<').

Thus r(A, B) = r(A', B') if and only if (^(f) = (̂ y (/') which by (7.8) is equivalent
to S(f) = 2(f).

10. Conjugates of affine functions

We will prove Theorem 2 from the next lemma which is inductive in nature and
is best stated with a previously defined hypothesis. We will prove the lemma after using
it to prove Theorem 2. We use (*) (/, a, b) to mean all of: (1) / is an affine function
on [a, b] with a eZ[i],/(a) eZ[i], X(a) > K and X(/(a)) > K. (2) A morphism of Q.
of index d + X(/(a)) — X(a) defined on [a, b] agrees with/on some [a, a + s). (3) [a, b]
includes the next endpoint a' to the right of a in Q "̂".
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Lemma 10.1. — Assume (4) of Lemma 8 .1 fails and condition (*) (/ a, b) holds. Then
there is a smallest x e Z[^J with a < x < a' and with S(A;) 4= 2(/(A;)), and further, for this x,
the condition (*) (/, x, b) will hold.

Proof of Theorem 2 from Lemma 10.1. — If A is not PL, then (4) of Lemma 8.1 fails.
Take two points a and c with \{a) and \{c) larger than K. There is a morphism/i taking a
to c with index d-^ not equal to \(c) — X(fl). This locally is ^"-compatible by the arguments
proving Lemma 6.2. Let/, be affine on [a, a'] with slope agreeing with that of/i to
the right of a. Regarding [a, a'] as a subset of [0, I], we can use Lemma 2.1 to build
an element/of T that agrees with/ on [a, a']. We have now satisfied the hypotheses
of Lemma 10.1. Let x^ be the x value guaranteed by Lemma 10.1. By Lemma 6.2,
/agrees with a morphism/g of some index d^ to the right of^i. By Lemma 9.2,/agrees
with/i to the left of x^ but not to the right of x-^. By Lemma 6.1, the morphisms/i and/g
cannot have the same index. This implies that h~^fh has a break at h~^(x^. Since the
hypotheses of Lemma 10.1 are repeated with a replaced by x^ we obtain a sequence
x^< x^< . . . in [a, a'} so that h~^fh has a break at each h-1^) in [^(fl), A-^a')].
This implies that h'^^fh is not PL and contradicts Lemma 5.3.

To find an x in Lemma 10.1 with ^L{x) 4= 2 (/(A;)), we need to compare
sequences of break sum values. The next lemma is the necessary tool. If (c,),
0 ̂  i < 2k, is a finite sequence with V entries and 0 ̂  j < A, then a 2^-part is a sub-
sequence ((T,), n23 ^ i< (n + 1) 23, for some fixed n with 0^ n< 2k~3. Such a 2'-part
is odd or even depending on whether n is odd or even. Thus there are two 2A;-l-parts
(one odd and one even) ordinarily called halves, four 2fc-2-parts (two odd and two
even) ordinarily called quarters, and so forth. For a fixed j, two different 2'-parts (a,),
n23^ i< (n+ 1) 23 and (cy,), m23 ̂  i< {m + 1) 23 are called equal if CT^) == a^ for
all i with 0 ̂  i < 23 where s(i) = n23 + i and t(i) = w23 + z.

Lemma 10.2. — 7/' (o,), 0^ i< 2k is a finite sequence so that for all j with 0 ̂  j < k,
some even 23-part equals some odd 23-part, then the sequence is constant.

Proof. — If all even 2^-parts are equal and all odd 2^-parts are equal, then the
hypothesis implies that all 2Lparts are equal and therefore that all even 2i~l-parts
are equal and all odd 23~l-parts are equal. The lemma follows by induction.

Proof of Lemma 10.1. — Let/agree with the morphism/i on \a, a + e). Either
/i takes Q^ to Q^)-^ for a positive e = d - (X(/(a)) - X(<z)) or takes Q^0^6

to (^(f(a)) for a positive e == (X(/(a)) — X(a)) — d. In the first case we will work with a
and a' as described in Q^^. In the second case we will work with a and the next endpoint
to its right a" in Q^^6 which will satisfy [a, a"J s [a, a']. If x is found with the right
properties in [a, a"], then we are done. We will describe the argument only in the first
case and let the reader check that it applies with little change to the second.

We will consider elements x e Z[^] n (a, a') with \(x) = X(a) + k. There are 2k~l



30 MATTHEW G. BRIN

of these and they are carried by/i to elements with X(/i(A;)) == X(/(a)) + e + k. Now
S(^) is determined by x == ^(a;)-K(^ =^(o)+fc-K(^ with X(^) == K, and 2(/iM) is
determined by ;? = ̂ ^^(/iM) == ̂ ^^-^/iM) with X(J?) = K.

Now 0s has 2K endpoints of which 2K-1 of them have X = K. These occur at
the odd positions starting at 0 (which has position 0). Because of (7.9), the function S( )
on this sequence of endpoints forms the sequence (o,) of length g1^""1 to which we will
apply Lemma 10.2. Among the endpoints of Q^ are the 2K~X; endpoints of QK~k.
These occur at positions that are multiples of 2k from 0, lie between endpoints with
X = K, and carve (<r,) into 2K~ f c different 2fc-l-parts. Among these 2K-fc endpoints
of Q^"^ exactly half of them have X == K — k, and these occur at positions that are
odd multiples of V- from 0. To the right of these endpoints we find the odd 2fc~l-parts
of (o,). Now

Ug^-^a)) = XQ^-^)) == X(a) - (X(a) + k - K] == K - k,

and ^g^^'^-^fW) = Hf(a)) - [X(/(a)) + e + k - K]

== K - (k + e).

Thus the 2k~~l elements x e Z[i] n {a, a ' ) with \{x) == X(fl) + k map to an odd 2fc-l-part
of (<y^) and their images under/i map to an even 2fc~l-part of (o,) since we assume e > 0.
Since (4) of Lemma 8.1 is assumed false, the Lemma 10.2 implies that we cannot have
S(^) = S(/i(^)) for all x e Z[^] n (a, a') with \{x) = \{a) + k for all k with 1 < k < K.
Thus some x eZ[i] n (a, fl') has S(^) 4= S(/i(A;)).

The rest of the argument is similar to the proof of Theorem 2 from this lemma.
Lemma 9.1 implies there is a minimum such x. Lemma 9.2 implies thaty agrees withy^
to the left of x and not to the right. By Lemma 6.2, f agrees with some morphism f^
ofQto the right of x. Now Hfi(x)) — \{x) = X(/(a)) + e — X(a) = rfthe degree of/i.
By Lemma 6.1, this is not the degree of/a. Since x eZ[^] n (a, a ' ) and a and a' are
consecutive endpoints in Q^, the endpoint ^' to the right of x in Q^^ cannot exceed a'.
We have verified all properties of (*) (/ x, a').

PART IV. EXAMPLES

We build examples of conjugators h by building the function g == hv^h~1. We
build g by building a Markov partition for g. Let OQ, a^ ..., a^-i be positive integers
with sum S. The integers represent the lengths in units of 1/S of intervals in counter-
clockwise order of a Markov partition of S1 where the first interval (with length flo/S)
has left endpoint 0. The action of g is to fix 0 and take each interval affinely to the union
of two consecutive intervals. This corresponds to the structures in Section 6 if n is an
integral power of 2. However for any n, a Markov structure for Vg based on n initial
intervals can be built by starting with intervals of length Ifri for the first partition and
then pulling back endpoints under iterates of Vg"1 for the finer partitions. Once a string
of positive integers is written out for the first partition for g, then the remaining partitions
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are similarly obtained by pulling back endpoints under iterates ofg~1. The only question
that remains is whether the endpoints in the Markov structure for g are dense in S1.
That this is the case is seen by noting that each interval is subdivided into two intervals
that are shorter than the original by some fraction. This fraction is of the form
^/(^i + ^214-1) or ^i+i/^i + ^21+1) where subscripts are treated cyclically mod n.
Among these ratios is one that is largest. Now we observe that all intervals shrink under
repeated subdivision at least as fast as powers of this largest ratio. Once the density
of the endpoints is established, then there is a unique conjugating homeomorphism
h: S1 -> S1 that is an isomorphism of the Markov structure for Vg to that of g.

Once the values of the ^ are known, then it is a straightforward task to check
if g is ^-compatible, to calculate values of gb and S( ) at the endpoints, and so forth.
Whether h is PL is detected by the equal pairs condition according to Lemma 8.1.
This condition is easier to interpret if n is even, so our examples will all use an even
number of initial intervals.

Ifg turns out to be ^-compatible and n is an integral power of 2, then conjugation
by h is at least an endomorphism ofT into T. This is because the endpoints of the Markov
partition for Vg will be all of Z[^] and the endpoints of the Markov partition for g will
be a (perhaps proper) subset of Z[^]. This gives A(Z[^J) c Z[^J and the rest follows
from Lemma 3.2, from (3.1) and from Lemma 3.3.

Example 1. — The sequence 2, 2, 3, 1, 4, 2, 1, 1, 2, 2, 3, 1, 2, 2, 2, 2 has 16 lengths
with sum 32. It is easily checked that the function g defined by this partition is ^-compa-
tible. The equal pairs condition is violated, so h is not PL. The results in Part III were
discovered by studying this example. This gives an example of a non-PL homeomorphism h
that conjugates T into T and has lifts that conjugate F into F. In addition, the function g
has zero break at its fixed point 0. This makes the function S( ) well defined. Since

(10.1) g\x)==^x)-Wx))

it also makes the non-linearity of g a <c coboundary ". This shows that (10.1) is not
sufficient to reach the conclusion of Theorem 2. The right hypotheses to replace (10.1)
seems to be that the following statement fails for only finitely many pairs x andj in S1:

(») If x and y have ^(.v) = gQ(Jy) for some positive integers p and q, then
WW=WjO.

Example 2. — The sequence 2, 2, 1, 1, 1, 1 has 6 lengths with sum 8. Since it satisfies
the equal pairs condition, the conjugating homeomorphism h is PL. Since the number
of intervals is not a power of 2, there are endpoints of the Markov partition for Vg that
are not in Z[j]. Thus A(Z[^]) q Z[^], h conjugates T into but not onto T, and h~1

conjugates T onto a group of PL homeomorphisms of Si that properly contains T.

Remark. — We do not have an example of a non-PL homeomorphism h so that
g is ^-compatible and h~1 conjugates v^ to a PL function. Thus we do not know whether
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the hypothesis that h~l^h be r-compatible in Theorem 2 can or cannot be replaced
by the hypothesis that h~l^h be PL. The point is that under the weaker hypothesis,
Lemma 5.3 and its consequences Lemma 6.2, Lemma 7.2 and (7.7) do not seem to
be available.

Example 3. — The sequence 1, 1, 3, 1, 2, 4, 1, 1, 1, 1, 6, 2, 2, 2, 2, 2 has 16 lengths
with sum 32. Here the conjugator h fails to have A(Z[^J) = Z[^] in spite of the fact
that there are 24 intervals. It is easy to check that the midpoint of the unique interval
of length 4 is a point of period 2 under the action of g and cannot be the image of any
element of Z[y.

Example 4. — The sequence 1, 3, 4, 2, 1, 3, 1, 1 has 8 lengths with sum 16. There
is no well defined function 2( ) since the break at the fixed point is not zero.

Example 5. — This sequence 1, 1, 3, 1, 2, 1, 3, 1, 2, 2, 1, 3, 2, 1, 1, 3, 2, 2 has
18 lengths with sum 32. Two of the endpoints (sixth and twelfth) form a cycle of period 2
and have breaks — 2 and + 1. Even though g\0) === 0, we cannot define 2( ) because
the sum of the breaks on a future orbit that contains these endpoints does not converge.
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