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Finding largest small polygons with GloptiPoly

Didier Henrion1,2,3, Frédéric Messine4

March 22, 2011

Abstract

A small polygon is a convex polygon of unit diameter. We are
interested in small polygons which have the largest area for a given
number of vertices n. Many instances are already solved in the liter-
ature, namely for all odd n, and for n = 4, 6 and 8. Thus, for even
n ≥ 10, instances of this problem remain open. Finding those largest
small polygons can be formulated as nonconvex quadratic program-
ming problems which can challenge state-of-the-art global optimiza-
tion algorithms. We show that a recently developed technique for
global polynomial optimization, based on a semidefinite programming
approach to the generalized problem of moments and implemented in
the public-domain Matlab package GloptiPoly, can successfully find
largest small polygons for n = 10 and n = 12. Therefore this signif-
icantly improves existing results in the domain. When coupled with
accurate convex conic solvers, GloptiPoly can provide numerical guar-
antees of global optimality, as well as rigorous guarantees relying on
interval arithmetic.
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1 Introduction

The problem of finding the largest small polygons was first studied by Rein-
hardt in 1922 [16]. He solved the problem by proving that the solution
corresponds to the regular small polygons but only when the number of ver-
tices n is odd. He also solved the case n = 4 by proving that a square with
diagonal length equal to 1 is a solution. However, there exists an infinity of
other solutions (it is just necessary that the two diagonals intersect with a
right angle). The hexagonal case n = 6 was solved numerically by Graham
in 1975 [7]. Indeed, he studied possible structures that the optimal solu-
tion must have. He introduced the diameter graph of a polygon which is
defined by the same vertices as the polygon and by edges if and only if the
corresponding two vertices of the edge are at distance one. Using a result
due to Woodall [17], he proved that the diameter graph of the largest small
polygons must be connected, yielding 10 distinct possible configurations for
n = 6. Discarding 9 of these 10 possibilities (by using standard geometrical
reasonings plus the fact that all the candidates must have an area greater
than the regular small hexagon), he determined the only possible diameter
graph configuration which can provide a better solution than the regular
one. He solved this last case numerically, yielding the largest small hexagon.
The name of this corresponding optimal hexagon is Graham’s little hexagon.
Following the same principle, Audet et al. in 2002 found the largest small
octagon [4]. The case n = 8 is much more complicated than the case n = 6
because it generates 31 possible configurations and just a few of them can be
easily discarded by geometrical reasonings. Furthermore, for the remaining
cases, Audet et al. had to solve difficult global optimization problems with
10 variables and about 20 constraints. In [4], these problems are formulated
as quadratic programs with quadratic constraints. For solving this program,
Audet et al. used a global solver named QP [1]. Notice that optimal solutions
for n = 6 and n = 8 are not the regular polygons [4, 7]. At the Toulouse
Global Optimization Workshop TOGO 2010, the corresponding optimal oc-
tagon was named Hansen’s little octagon. The following cases n = 10, 12, . . .
were open. However in 1975, Graham proposed a conjecture which is the
following: when n is even and n ≥ 4, the largest small polygon must have a
diameter graph with a cycle with n− 1 vertices and with an additional edge
attached to a vertex of the cycle; this is true for n = 4, 6 and also n = 8, see
Figure 1 for an example of this optimal structure for the octagon. Therefore,
this yields only one possible diameter graph configuration that must have the
optimal shape. In 2007, Foster and Szabo proved Graham’s conjecture [6].
Thus to solve the following open cases n ≥ 10 and n even, it is just necessary
to solve one global optimization problem defined by the configuration of the
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diameter graph with a cycle with n − 1 vertices and an additional pending
edge. In order to have an overview of these and other related subjects about
polygons, refer to [2, 3].

In this paper, using the Global Optimization software GloptiPoly [9], we
solve the two open cases n = 10 and n = 12. Invariance of the quadratic
programming problem under a group of permutation suggests that small
polygons have a symmetry axis. Exploiting this symmetry allows to reduce
signficantly the size of optimization problems to be solved, even though cur-
rently we are not able to prove that this is without loss of generality. In
Section 2, the general quadratic formulation is presented. Then, we show
that the quadratic problem is invariant under a group of permutations, which
suggests an important reduction of the size of the quadratic programs. In
Section 3 GloptiPoly is presented and an example of its use is given to solve
the case of the octagon yielding a rigorous certificate of the global optimum
found in [4]. In Section 4, we present the solutions for the largest small
decagon (n = 10) and dodecagon (n = 12), and conjecture the solutions for
the tetradecagon (n = 14) and the hexadecagon (n = 16). Then, we conclude
in Section 5.

2 Nonconvex Quadratic Optimization Prob-

lems

As mentioned above, for even n ≥ 4, finding the largest small polygon with n

vertices amounts to solving only one global optimization problem [6], namely
a nonconvex quadratic programming problem. This formulation was previ-
ously introduced by Audet et al. in [4] for the octagon case. On Figure 1,
we recall the nomenclature and configuration corresponding to the octagon
(n = 8).



















































max
x,y

A8 = x1 +
1
2
{(x2 + x3 − 4x1)y1 + (3x1 − 2x3 + x5)y2

+(3x1 − 2x2 + x4)y3 + (x3 − 2x1)y4 + (x2 − 2x1)y5}
s.t. ‖vi − vj‖

2 ≤ 1 i, j = 1, . . . , 8
‖v2 − v6‖

2 = 1
x2
i + y2i = 1 i = 1, . . . , 5

yi ≥ 0 i = 1, . . . , 5
0 ≤ x1 ≤

1
2

0 ≤ xi ≤ 1 i = 2, . . . , 5.

(1)

Without loss of generality we can insert the additional constraint x2 ≥ x3

which eliminates a symmetry axis. In program (1), all the constraints are
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v8 = (0, 0)

v1 = (x1 − x2, y1 − y2)

v2 = (−x1 + x3 − x5,

y1 − y3 + y5)

v3 = (−x1, y1)

v4 = (0, 1)

v5 = (x1, y1)

v6 = (x1 − x2 + x4,

y1 − y2 + y4)

v7 = (x3 − x1, y1 − y3)

Figure 1: Case of n = 8 vertices. Definition of variables following Graham’s
conjecture.

quadratic. The quadratic objective function corresponds to the computation
of the area of the octagon following Graham’s diameter graph configuration.

To generalize this quadratic formulation, we have to define two vertices
vn = (0, 0) and vn

2
= (0, 1) and n − 2 other vertices vi with the help of the

following variables:

uk =

(

x1 +

k
∑

i=1

(−1)ix2i, y1 +

k
∑

i=1

(−1)iy2i

)

,

wk =

(

k
∑

i=0

(−1)i+1x2i+1,

k
∑

i=0

(−1)iy2i+1

)

,

with k = 0, 1, . . . , n
2
− 2. On Figure 2, we represent the four first vertices,

namely (0, 0), (−x1, y1), (0, 1), (x1, y1). Note that we have an axis of symme-
try from the line passing through (0, 0) and (0, 1), i.e. this symmetry provides
the maximal area for this quadrilateral polygon and its corresponding value
is equal to x1. Thus, from vertex u0 = (x1, y1), we construct iteratively all
the vertices ui following a path in the graph of diameter and we do the same
from w0 = (−x1, y1) for the vertices wi, see Figure 2.

The main idea using this notation is that it yields:

‖uk+1 − uk‖ =
∥

∥

(

(−1)k+1x2(k+1), (−1)k+1y2(k+1)

)∥

∥ = x2
2(k+1) + y22(k+1) = 1.

We obtain by the same way that ‖wk+1 − wk‖ = x2
2(k+1)+1 + y22(k+1)+1 = 1.

This allows to eliminate all the variables yi, reducing by half the size of the
problem.
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• ••

(0, 0)

(−x1, y1)
(0, 1)

(x1, y1)

•

• •

••

••

u0

u1

u3
u2

u4

(0, 0)

(0, 1)

•

••

•

••w2

w0

w3

w1

(0, 0)

(0, 1)

Figure 2: Construction of the General Quadratic Formulation.

Then, we rename the vertices by vi = (xi, yi):














vi := u2i−1 i = 1, . . . , ⌊n−2
4
⌋

vn−i := w2i−1 i = 1, . . . , ⌊n−2
4
⌋

vn
2
−i := w2(i−1) i = 1, · · · , ⌈n−2

4
⌉

vn
2
+i := u2(i−1) i = 1, · · · , ⌈n−2

4
⌉

The general quadratic program can be written as follows:






















































max
x,y

An = x1 +
1
2

n−2
∑

i=1

i6=n
2
−1,i6=n

2

(yixi+1 − xiyi+1)

s.t. ‖vi − vj‖
2 ≤ 1 i, j = 1, . . . , n

‖v⌊n

4
⌋ − v⌈ 3n

4
⌉‖

2 = 1

x2
i + y2i = 1 i = 1, . . . , n− 3

yi ≥ 0 i = 1, . . . , n− 3
0 ≤ x1 ≤

1
2

0 ≤ xi ≤ 1 i = 1, . . . , n− 3

(2)

where xi and yi are linear functions respectively depending on xi and yi.
We also give equivalent formulations for the computation of the area of

an n-gon:

An =
1

2

n−2
∑

i=1

(yixi+1 − xiyi+1),

An = x1 +
1

2





n
2
−2
∑

i=1

(yixi+1 − xiyi+1) +

n−2
∑

i=n

2
+1

(yixi+1 − xiyi+1)



 ,

An =
1

2

n
∑

i=1

(xi + xi+1)× (yi − yi+1),

where i+ 1 is taken modulus n in the second expression of An.

Remark that the largest little quadrilateral, Graham’s little hexagon and
Hansen’s little octagon all have an axis of symmetry passing through vertices
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(0, 0) and (0, 1) in our quadratic formulation. In the following, we state a
result suggesting that this symmetry axis should occur for all the largest
small n-gons when n is even.

Let us define the substitution σ as follows:

σ(x2i) = x2i+1 and σ(x2i+1) = x2i, i = 1, . . . , n− 3.

This provides a group G of substitutions which permutes all the vertices
except vn

2
−1 and vn

2
+1 through the symmetry axis passing by vn and vn

2
.

Lemma 1 Quadratic problem (2) is invariant through substitution group G.

Proof: This substitution does not affect the constraints because it is just

a new numbering of the vertices and σ
(

v⌊n
4
⌋

)

= v⌈ 3n
4
⌉ and reciprocally

σ
(

v⌈ 3n
4
⌉

)

= v⌊n

4
⌋. Hence, it remains to prove that An is invariant by σ.

Denote by v̂i = (x̂i, ŷi) with i = 1, . . . n the new vertices obtained using
substitution σ. Hence, v̂i = (−xn−i, yn−i), for all i = 1, . . . , n

2
− 2 and

the other vertices are unchanged, i.e, v̂n = vn, v̂n
2
= vn

2
, v̂n

2
−1 = vn

2
−1 and

v̂n
2
+1 = vn

2
+1.

Let us compute the area of this polygon defined by the vertices v̂i which
corresponds to the n−gon defined by vertices vi and where a substitution σ

is applied:

Ân =
1

2

n−2
∑

i=1

(ŷix̂i+1 − x̂iŷi+1).

By remarking that the area for the quadrilateral defined by vertices v̂n, v̂n
2
−1, v̂n

2
, v̂n

2
+1

is equal to x1, one has:

Ân = x1 +
1

2





n
2
−2
∑

i=1

(ŷix̂i+1 − x̂iŷi+1) +

n−2
∑

i=n
2
+1

(ŷix̂i+1 − x̂iŷi+1)



 .

Because x̂i = −xn−i and ŷi = yn−i for all i = 1, . . . , n
2
− 2, n

2
+ 2, . . . , n − 1,

one obtains:

Ân = x1 +
1

2





n
2
−2
∑

i=1

(−yn−ixn−(i+1) + xn−iyn−(i+1))

+
n−2
∑

i=n
2
+1

(−yn−ixn−(i+1) + xn−iyn−(i+1))



 .
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By fixing j = n− i− 1, one directly obtains Ân = An and the result follows.
�

This lemma is not a proof that the largest n−gons with even n ≥ 4 have
a symmetry axis passing through vertices (0, 0) and (0, 1) in the quadratic
formulation given in (2). Numerical experiments reported below indicate
however that this is always the case. Hence, we can just conjecture it.

Conjecture 1 The largest small n−gon with even n ≥ 4 has a symmetry
axis corresponding to the pending edge in its optimal diameter graph config-
uration.

Note that this conjecture is proved for n = 4 by Reinhardt [16] and for
n = 6 by Yuan [18]. For the latter case, the demonstration was not given
in [7], however Graham used this result to find his little hexagon. Moreover,
Hansen’s little octagon found in [4] is a further evidence that the conjecture
may be true.

3 GloptiPoly

In 2000, Lasserre [13] proposed to reformulate a nonconvex polynomial opti-
mization problem (POP)

min g0(x)
s.t. x ∈ X = {x ∈ R

n : gi(x) ≥ 0, i = 1, . . . , m}
(3)

where g0(x), g1(x), . . . , gm(x) are multivariate polynomials, as a linear infinite-
dimensional moment problem, in turn truncated into a primal-dual linear
semidefinite programming (SDP) problem

min cTx

s.t. Ax = b

x ∈ K

max bTy

s.t. z = c− ATy

z ∈ K.

(4)

Using results on flat extensions of moment matrices and representations of
polynomials positive on semialgebraic sets, it was shown that under some
relatively mild assumptions (implying in particular that set X is bounded),
solving nonconvex POP (3) amounts to solving a sufficiently large linear
hence convex SDP problem (4). In this problem, vector y contains the mo-
ments of a probability measure supported on X

yα =

∫

X

xαdµ(x) (5)
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where we used the multi-index notation xα = xα1

1 xα2

2 · · ·xαn
n . Solving problem

(4) then amounts to optimizing over such probability measures. If problem
(3) has a finite number of global optimizers, then the optimal probability
measure is a linear combination of Dirac measures at these global optimizers.

In practice, a hierarchy of embedded SDP relaxations of increasing size are
solved gradually, for moments of increasing orders. Convergence and hence
global optimality can be guaranteed by examining a certain rank pattern in
the moment matrix, a simple task of numerical linear algebra. A user-friendly
Matlab interface called GloptiPoly was designed in 2002 to transform a given
POP (3) into an SDP relaxation (4) of given size in the hierarchy, and then
to call SeDuMi, a general-purpose conic solver [8]. A new version 3 was
released in 2007 to address generalized problem of moments, including POPs
but also many other decision problems. The interface was also extended to
other public-domain conic solvers [9]. Almost a decade after the initial spark
[13], Lasserre summarized the theoretical and practical sides of the approach
in a monograph [14]. GloptiPoly is freely available for download at

homepages.laas.fr/henrion/software/gloptipoly

For the case of the octagon (n = 8) here is the GloptiPoly 3 Matlab code
which is used to model the first SDP relaxation in the hierarchy:

mpol x1 x2 x3 x4 x5 y1 y2 y3 y4 y5

f = 1/2*((x2+x3-4*x1)*y1+(3*x1-2*x3+x5)*y2+(3*x1-2*x2+x4)*y3+...

(x3-2*x1)*y4+(x2-2*x1)*y5)+x1;

K = [(x1-x2)^2+(y1-y2)^2<=1, (-x1+x3-x5)^2+(y1-y3-y5)^2<=1, ...

(x1-x2+x4)^2+(y1-y2-y4)^2<=1, (-x1+x3)^2+(y1-y3)^2<=1, ...

(2*x1-x2-x3+x5)^2+(-y2+y3-y5)^2<=1, (2*x1-x2)^2+y2^2<=1, ...

(x1-x2)^2+(y1-y2-1)^2<=1, (2*x1-x2-x3)^2+(-y2+y3)^2<=1, ...

(x3-x5)^2+(-y3+y5)^2<=1, (-x1+x3-x5)^2+(y1-y3-y5+1)^2<=1, ...

(2*x1-x3+x5)^2+(-y3+y5)^2<=1, ...

(2*x1-x2-x3+x4+x5)^2+(-y2+y3+y4-y5)^2<=1,...

(-2*x1+x2-x4)^2+(y2-y4)^2<=1, (x1-x2+x4)^2+(y1-y2+y4-1)^2<=1, ...

(x1-x3)^2+(1-y1+y3)^2<=1, (x2-x4)^2+(y2-y4)^2<=1, ...

(2*x1-x3)^2+y3^2<=1, (2*x1-x2-x3+x4)^2+(-y2+y3+y4)^2<=1,...

x2-x3>=0, y1>=0, y2>=0, y3>=0, y4>=0, y5>=0, 0<=x1, x1<=1/2,

0<=x2, x2<=1, 0<=x3, x3<=1, 0<=x4, x4<=1, 0<=x5, x5<=1,...

y5^2==1-x5^2, y4^2==1-x4^2, y3^2==1-x3^2, y2^2==1-x2^2, ...

y1^2==1-x1^2];
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P = msdp(max(f),K);

These commands generate a GloptiPoly object P which encodes the first SDP
relaxation (4) of the nonconvex POP (3). Note that the 5 equality constraints
liking the xi and yi variables are exploited by the msdp command to reduce the
size of the resulting SDP relaxation, using moment substitutions as explained
in [9]. The SDP relaxation in primal-dual form (4) can be retrieved with the
following command:

[A,b,c,K] = msedumi(P);

The SDP relaxation can be solved with the following command calling the
default conic solver (SeDuMi 1.3 in our case):

[stat,obj] = msol(P);

We obtain stat = 0 indicating that GloptiPoly provides in output argument
obj a valid upper bound on the global maximum, equal to 0.72686848 (with
8 significant digits). In this case we have to go deeper in the hierarchy and
with the following instructions we build and solve the second SDP relaxation:

P = msdp(max(f),K,2);

[stat,obj] = msol(P);

We obtain stat = 1 indicating that GloptiPoly certifies numerically global
optimality (the moment matrix has approximately rank one), and it provides
in output argument obj an upper bound 0.72686848. With the command

double([x1 x2 x3 x4 x5])

we can retrieve the solution (with 8 significant digits) x1 = 0.26214172, x2 =
0.67123417, x3 = 0.67123381, x4 = 0.90909242, x5 = 0.90909213. This SDP
problem is solved by SeDuMi in less than 5 seconds. The quadratic objective
function evaluated at the above solution is the same as the computed upper
bound to 11 significant digits. The symmetry considerations of Lemma 1 and
Conjecture 1 indicate that x2 = x3 and x4 = x5 at the optimum, and we see
that the above solution achieves this to 5 digits for x2 and to 6 digits for x4.

Moreover, these results can be rigorously guaranteed by using Jansson’s
VSDP package which uses SDP jointly with interval arithmetic [11]. The
solution of an SDP problem can be guaranteed at the price of solving a
certain number of SDP problems of the same size. In our case, VSDP solved
8 instances of the second SDP relaxation to provide the guaranteed lower
bound 0.72686845 and guaranteed upper bound 0.72686849 on the objective
function, namely the area of the octagon.
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Generally speaking, note that the current status of SDP problem solving
is rather disappointing, in the sense that, to the best of our knowledge, there
is currently no backward stable SDP solver, and there is no efficient estimate
of conditioning of an SDP problem (by efficient we mean computationally less
efficient than solving the SDP problem itself). The VSDP package addresses
indirectly these issues in the sense that it uses interval arithmetic to provide
guaranteed bounds on the primal-dual solutions of problem (4), but at the
price of a significant increase of the computational burden. In the lack of
backward stability guarantees for SDP solvers and efficient estimates of SDP
problem conditioning, we are not aware of a cheaper alternative to rigorously
certify solutions of SDP relaxations of nonconvex POPs.

4 Numerical experiments

We applied GloptiPoly 3 and SeDuMi 1.1R3 to solve the nonconvex quadratic
optimization problems. In order to obtain accurate solutions, we let SeDuMi
minimize the duality gap as much as possible. We also tightened the toler-
ance parameters used by GloptiPoly to detect global optimality and extract
globally optimal solutions. We used a 32 bit desktop personal computer with
a standard configuration and we report our numerical results to 8 significant
digits.

4.1 The largest small decagon

In the case n = 10, we obtain the solution x1 = 0.21101191, x2 = 0.54864468,
x3 = 0.54864311, x4 = 0.78292524, x5 = 0.78292347, x6 = 0.94529290,
x7 = 0.94529183 whose global optimality is guaranteed numerically at the
second SDP relaxation. This SDP problem, containing 2240 variables (size of
the moment vector) and a semidefinite cone of size 113 (size of the moment
matrix), is solved by SeDuMi in a little bit more than 1 minute. The objective
function of the SDP relaxation, an upper bound on the exact global optimum,
is equal to 0.74913736. The quadratic objective function evaluated at the
above solution is the same to 10 significant digits. The solution for the
optimal decagon is drawn in Figure 3. Consistently with Conjecture 1, we
observe a symmetry axis on the optimal solution, namely x2 = x3, x4 = x5

and x6 = x7 up to 5 significant digits.
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Figure 3: Largest Small Decagon.

4.2 The largest small dodecagon

For n = 12, without exploiting symmetry, the second SDP relaxation contains
5640 variables (size of the moment vector) and a semidefinite cone of size 181
(size of the moment matrix). Such SDP problems are currently challenging
for conic solvers, even though recent progress on projection/regularization
algorithms [10], indicate that we may soon be able to solve routinely problems
with semidefinite matrices of size by the thousands. After approximately 25
minutes of CPU time, we obtain the following solution: x1 = 0.17616131,
x2 = 0.46150224, x3 = 0.46150519, x4 = 0.67623091, x5 = 0.67623301, x6 =
0.85320300, x7 = 0.85320328, x8 = 0.96231370, x9 = 0.96231344 featuring
the expected symmetry of Conjecture 1. The objective function is equal to
0.76072988. The solution for the optimal dodecagon is drawn in Figure 4.

4.3 Exploiting the symmetry axis

Remarking that Conjecture 1 was formally proved for cases n = 4 and 6,
[7, 18] and moreover that it is shown numerically for cases n = 8, 10 and 12
, we performed the determination of the following largest small polygons for
n = 10 to 16 (with n even) using this hypothesis of symmetry.

• Decagon (n = 10):

Recall from Lemma 1 that problem (2) is invariant under the action of
permutation group G. The SDP relaxations (4) of the corresponding
problem (3) are also invariant w.r.t. G. It follows that several moments
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Figure 4: Largest Small Dodecagon.

(5) are equal, for example if x2 and x3 can be permuted we have
∫

X

xα2

2 xα3

3 dµ(x) =

∫

X

xα3

2 xα2

3 dµ(x)

for all integers α2 and α3. Therefore vector y contains a lot of redun-
dant entries that can be removed. Similarly, the constraints in problem
(4) can be reduced significantly. See [12] for a description of how sym-
metry can be exploited in SDP relaxations of polynomial optimization
problems, and see also [5] for a recent short survey on exploiting spe-
cial structure in SDP problems, in particular symmetry and invariance
under a group of substitutions.

Rather than implementing the substitutions in the vector of moments as
described above, we went further and substituted all the variables that
can be permuted, e.g. we replaced x3 with x2, x5 with x4 and x7 with x6,
respectively. The resulting SDP relaxations (4) are thus significantly
smaller. For comparison, the second SDP relaxation of the decagon
quadratic problem without substitutions contains 2240 variables (size
of the moment vector) and a largest semidefinite cone of size 113 (size
of the moment matrix) whereas the second SDP relaxation with substi-
tutions contains 320 variables and a largest semidefinite cone of size 41,
a significant reduction. This latter SDP problem is solved by SeDuMi
in about 2 seconds, and GloptiPoly can certify numerically global opti-
mality of the solution with a rank-one moment matrix. The objective
function is equal to 0.74913735, and the solution is x1 = 0.21101121,
x2 = 0.54864181, x4 = 0.78292327, x6 = 0.94529267, consistently with
the above solution obtained without exploiting symmetry.
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We also have tried to use VSDP jointly with SeDuMi 1.3 to certify rig-
orously the optimal decagon found without exploiting symmetry, as we
did for the octagon in Section 3, but we could not obtain any meaning-
ful result. We have not tried to use alternative conic solvers such as e.g.
SDPT3. However, when solving the reduced second SDP relaxation,
VSDP provides the guaranteed lower bound 0.74913721 and guaran-
teed upper bound 0.74913740 on the area of the optimal symmetric
decagon. The lower bound is also guaranteed for the nonsymmetric
case.

• Dodecagon (n = 12):

By exploiting symmetry, the second SDP relaxation contains 680 vari-
ables and a semidefinite cone of size 61. It is solved after about 8
seconds with SeDuMi, and the returned solution is as follows: x1 =
0.17616079, x2 = x3 = 0.46150096, x4 = x5 = 0.67622897, x6 = x7 =
0.85319926, x8 = x9 = 0.96231045 for an objective function equal to
0.76072986.

Running VSDP jointly with SeDuMi 1.3 on this problem provides only a
guaranteed upper bound on the objective function, equal to 0.76072997.

• Tetradecagon (n = 14):

GloptiPoly finds in 23 seconds the largest small symmetric tetradecagon:
x1 = 0.15100047, x2 = x3 = 0.39733106, x4 = x5 = 0.59117050, x6 =
x7 = 0.76441599, x8 = x9 = 0.89237421, x10 = x11 = 0.97279813
achieving the objective function 0.76753100. In [2, 15, 16], an upper
bound on the area of a small n−gon is given:

An ≤ sin2
( π

2n

)

cot
(π

n

)

.

Hence, one has the following inequalities:

0.76753100 ≤ A∗
14 ≤ 0.76893595

on the area of the largest small tetradecagon.

• Hexadecagon (n = 16):

GloptiPoly finds in 276 seconds the largest small symmetric hexadecagon:
x1 = 0.13204787, x2 = x3 = 0.34840959, x4 = x5 = 0.52343183, x6 =
x7 = 0.68719098, x8 = x9 = 0.81912908, x10 = x11 = 0.91836386, x12 =
x13 = 0.97935563 achieving the objective function 0.77185969.
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Considering the above upper bound, one has the following inequalities

0.77185969 ≤ A∗
16 ≤ 0.77279135

on the area of the largest small hexadecagon.

5 Conclusion

GloptiPoly can be efficiently used to find some largest small polygons with
an even number n of vertices. The octagon case (n = 8) is most efficiently
solved than in [4]: (i) the optimal solution is now certified with 7 digits (us-
ing VSDP jointly with interval arithmetic) and (ii) the required CPU time
is about 5 seconds instead of 100 hours (in 1997). Furthermore, the next
open instance for the decagon (n = 10) is solved using GloptiPoly in approx-
imately 1 minute, and the dodecagon (n = 12) is solved in approximately 25
minutes. Note however that these solutions could not be certified rigorously
with VSDP and interval arithmetic.

Symmetry of the problem can be exploited to reduce further the dimen-
sion of the SDP relaxations and hence the accuracy of the results, even though
we cannot prove theoretically that solving the reduced problem is equivalent
to solving the non-reduced problem, see Conjecture 1. We just observe exper-
imentally for small size instances that our conjecture is true for n = 8, 10, 12.
Note that this conjecture was formally proved for cases n = 4, 6 elsewhere in
the technical literature. Moreover, we provide the solutions for the largest
small symmetric tetradecagon (n = 14) and hexadecagon (n = 16) which
are conjectured to be also the optimal nonsymmetric ones. These numerical
experiments tend to show that it seems to be also possible to solve the next
open cases n = 18 and n = 20 as soon as symmetry is exploited.

We note also that these nonconvex quadratic problems are always solved
globally at the second SDP relaxation, a phenomenon that we also observed
for many quadratic problems from the technical literature [8].

In future works, we have to certify and guarantee the solution obtained for
the cases n = 10 and n = 12. Finally, we are currently investigating further
applications of this technique to other nonconvex polynomial optimization
problems arising in geometry.
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