1,182 research outputs found

    On the formation of hot DQ white dwarfs

    Get PDF
    We present the first full evolutionary calculations aimed at exploring the origin of hot DQ white dwarfs. These calculations consistently cover the whole evolution from the born-again stage to the white dwarf cooling track. Our calculations provide strong support to the diffusive/convective-mixing picture for the formation of hot DQs. We find that the hot DQ stage is a short-lived stage and that the range of effective temperatures where hot DQ stars are found can be accounted for by different masses of residual helium and/or different initial stellar masses. In the frame of this scenario, a correlation between the effective temperature and the surface carbon abundance in DQs should be expected, with the largest carbon abundances expected in the hottest DQs. From our calculations, we suggest that most of the hot DQs could be the cooler descendants of some PG1159 stars characterized by He-rich envelopes markedly smaller than those predicted by the standard theory of stellar evolution. At least for one hot DQ, the high-gravity white dwarf SDSS J142625.70+575218.4, an evolutionary link between this star and the massive PG1159 star H1504+65 is plausible.Comment: 4 pages, 2 figures. To be published in The Astrophysical Journal Letter

    Outdoor play

    Get PDF
    This paper is a review of the literature relative to outdoor play practices in education. Benefits, as well as problems, associated with outdoor play practices were discussed. Guidelines for planning and implementing successful outdoor play practices were outlined and conclusions were drawn from the literature. Recommendations were made for future outdoor play programs

    Outer boundary conditions for evolving cool white dwarfs

    Get PDF
    White dwarf evolution is essentially a gravothermal cooling process, which,for cool white dwarfs, sensitively depends on the treatment of the outer boundary conditions. We provide detailed outer boundary conditions appropriate for computing the evolution of cool white dwarfs employing detailed non-gray model atmospheres for pure H composition. We also explore the impact on the white dwarf cooling times of different assumptions for energy transfer in the atmosphere of cool white dwarfs. Detailed non-gray model atmospheres are computed taken into account non-ideal effects in the gas equation of state and chemical equilibrium, collision-induced absorption from molecules, and the Lyman alpha quasi-molecular opacity. Our results show that the use of detailed outer boundary conditions becomes relevant for effective temperatures lower than 5800 and 6100K for sequences with 0.60 and 0.90 M_sun, respectively. Detailed model atmospheres predict ages that are up to approx 10% shorter at log L/L_sun=-4 when compared with the ages derived using Eddington-like approximations at tau_Ross=2/3. We also analyze the effects of various assumptions and physical processes of relevance in the calculation of outer boundary conditions. In particular, we find that the Ly_alpha red wing absorption does not affect substantially the evolution of white dwarfs. White dwarf cooling timescales are sensitive to the surface boundary conditions for T_eff < 6000K. Interestingly enough, non-gray effects have little consequences on these cooling times at observable luminosities. In fact, collision-induced absorption processes, which significantly affect the spectra and colors of old white dwarfs with hydrogen-rich atmospheres, have not noticeable effects in their cooling rates, except throughout the Rosseland mean opacity.Comment: 6 pages, 9 figures, to be published in Astronomy and Astrophysic

    Pulsations powered by hydrogen shell burning in white dwarfs

    Get PDF
    In the absence of a third dredge-up episode during the asymptotic giant branch phase, white dwarf models evolved from low-metallicity progenitors have a thick hydrogen envelope, which makes hydrogen shell burning be the most important energy source. We investigate the pulsational stability of white dwarf models with thick envelopes to see whether nonradial gg-mode pulsations are triggered by hydrogen burning, with the aim of placing constraints on hydrogen shell burning in cool white dwarfs and on a third dredge-up during the asymptotic giant branch evolution of their progenitor stars. We construct white-dwarf sequences from low-metallicity progenitors by means of full evolutionary calculations, and analyze their pulsation stability for the models in the range of effective temperatures Teff150008000T_{\rm eff} \sim 15\,000\,-\, 8\,000 K. We demonstrate that, for white dwarf models with masses M_{\star} \lesssim 0.71\,\rm M_{\sun} and effective temperatures 8500Teff116008\,500 \lesssim T_{\rm eff} \lesssim 11\,600 K that evolved from low-metallicity progenitors (Z=0.0001Z= 0.0001, 0.00050.0005, and 0.0010.001) the dipole (=1\ell= 1) and quadrupole (=2\ell=2) g1g_1 modes are excited mostly due to the hydrogen-burning shell through the ε\varepsilon-mechanism, in addition to other gg modes driven by either the κγ\kappa-\gamma or the convective driving mechanism. However, the ε\varepsilon mechanism is insufficient to drive these modes in white dwarfs evolved from solar-metallicity progenitors. We suggest that efforts should be made to observe the dipole g1g_1 mode in white dwarfs associated with low-metallicity environments, such as globular clusters and/or the galactic halo, to place constraints on hydrogen shell burning in cool white dwarfs and the third dredge-up episode during the preceding asymptotic giant branch phase.Comment: 6 pages, 4 figures, 1 table. To be published in Astronomy and Astrophysic

    A Lagrangian relaxation approach for the multiple sequence alignment problem

    Get PDF
    We present a branch-and-bound (bb) algorithm for the multiple sequence alignment problem (MSA), one of the most important problems in computational biology. The upper bound at each bb node is based on a Lagrangian relaxation of an integer linear programming formulation for MSA. Dualizing certain inequalities, the Lagrangian subproblem becomes a pairwise alignment problem, which can be solved efficiently by a dynamic programming approach. Due to a reformulation w.r.t. additionally introduced variables prior to relaxation we improve the convergence rate dramatically while at the same time being able to solve the Lagrangian problem efficiently. Our experiments show that our implementation, although preliminary, outperforms all exact algorithms for the multiple sequence alignment problem

    On the origin of white dwarfs with carbon-dominated atmospheres: the case of H1504+65

    Get PDF
    We explore different evolutionary scenarios to explain the helium deficiency observed in H1504+65, the most massive known PG1159 star. We concentrate mainly on the possibility that this star could be the result of mass loss shortly after the born-again and during the subsequent evolution through the [WCL] stage. This possibility is sustained by recent observational evidence of extensive mass-loss events in Sakurai's object and is in line with the recent finding that such mass losses give rise to PG1159 models with thin helium-rich envelopes and large rates of period change, as demanded by the pulsating star PG1159-035. We compute the post born again evolution of massive sequences by taking into account different mass-loss rate histories. Our results show that stationary winds during the post-born-again evolution fail to remove completely the helium-rich envelope so as to explain the helium deficiency observed in H1504+65. Stationary winds during the Sakurai and [WCL] stages only remove at most half of the envelope surviving the violent hydrogen burning during the born-again phase. In view of our results, the recently suggested evolutionary connection born-again stars --> H1504+65 --> white dwarfs with carbon-rich atmospheres is difficult to sustain unless the whole helium-rich envelope could be ejected by non-stationary mass-loss episodes during the Sakurai stage.Comment: 5 pages, 2 figures. To be published in Astronomy & Astrophysic

    Revisiting the luminosity function of single halo white dwarfs

    Get PDF
    White dwarfs are the fossils left by the evolution of low-and intermediate-mass stars, and have very long evolutionary timescales. This allows us to use them to explore the properties of old populations, like the Galactic halo. We present a population synthesis study of the luminosity function of halo white dwarfs, aimed at investigating which information can be derived from the currently available observed data. We employ an up-to-date population synthesis code based on Monte Carlo techniques, that incorporates the most recent and reliable cooling sequences for metal poor progenitors as well as an accurate modeling of the observational biases. We find that because the observed sample of halo white dwarfs is restricted to the brightest stars only the hot branch of the white dwarf luminosity function can be used for such purposes, and that its shape function is almost insensitive to the most relevant inputs, like the adopted cooling sequences, the initial mass function, the density profile of the stellar spheroid, or the adopted fraction of unresolved binaries. Moreover, since the cut-off of the observed luminosity has not been yet determined only lower limits to the age of the halo population can be placed. We conclude that the current observed sample of the halo white dwarf population is still too small to obtain definite conclusions about the properties of the stellar halo, and the recently computed white dwarf cooling sequences which incorporate residual hydrogen burning should be assessed using metal-poor globular clusters.Comment: 9 pages, 9 figures, accepted for publication in A&

    Pulsations of massive ZZ Ceti stars with carbon/oxygen and oxygen/neon cores

    Get PDF
    We explore the adiabatic pulsational properties of massive white dwarf stars with hydrogen-rich envelopes and oxygen/neon and carbon/oxygen cores. To this end, we compute the cooling of massive white dwarf models for both core compositions taking into account the evolutionary history of the progenitor stars and the chemical evolution caused by time-dependent element diffusion. In particular, for the oxygen/neon models, we adopt the chemical profile resulting from repeated carbon-burning shell flashes expected in very massive white dwarf progenitors. For carbon/oxygen white dwarfs we consider the chemical profiles resulting from phase separation upon crystallization. For both compositions we also take into account the effects of crystallization on the oscillation eigenmodes. We find that the pulsational properties of oxygen/neon white dwarfs are notably different from those made of carbon/oxygen, thus making asteroseismological techniques a promising way to distinguish between both types of stars and, hence, to obtain valuable information about their progenitors.Comment: 11 pages, including 11 postscript figures. Accepted for publication in Astronomy and Astrophysic

    Revisiting the axion bounds from the Galactic white dwarf luminosity function

    Get PDF
    It has been shown that the shape of the luminosity function of white dwarfs (WDLF) is a powerful tool to check for the possible existence of DFSZ-axions, a proposed but not yet detected type of weakly interacting particles. With the aim of deriving new constraints on the axion mass, we compute in this paper new theoretical WDLFs on the basis of WD evolving models that incorporate for the feedback of axions on the thermal structure of the white dwarf. We find that the impact of the axion emission into the neutrino emission can not be neglected at high luminosities (MBol8M_{\rm Bol}\lesssim 8) and that the axion emission needs to be incorporated self-consistently into the evolution of the white dwarfs when dealing with axion masses larger than macos2β5m_a\cos^2\beta\gtrsim 5 meV (i.e. axion-electron coupling constant gae1.4×1013g_{ae}\gtrsim 1.4\times 10^{-13}). We went beyond previous works by including 5 different derivations of the WDLF in our analysis. Then we have performed χ2\chi^2-tests to have a quantitative measure of the assessment between the theoretical WDLFs ---computed under the assumptions of different axion masses and normalization methods--- and the observed WDLFs of the Galactic disk. While all the WDLF studied in this work disfavour axion masses in the range suggested by asteroseismology (macos2β10m_a\cos^2\beta\gtrsim 10 meV; gae2.8×1013g_{ae}\gtrsim 2.8\times 10^{-13}) lower axion masses can not be discarded from our current knowledge of the WDLF of the Galactic Disk. A larger set of completely independent derivations of the WDLF of the galactic disk as well as a detailed study of the uncertainties of the theoretical WDLFs is needed before quantitative constraints on the axion-electron coupling constant can be made.Comment: 17 pages, 6 figures, accepted for publication in the Journal of Cosmology and Astroparticle Physic
    corecore