29 research outputs found

    Rapid Analysis of Listeria monocytogenes Cell Wall Teichoic Acid Carbohydrates by ESI-MS/MS

    Get PDF
    We report the application of electrospray ionization (ESI) mass spectrometry for compositional characterization of wall teichoic acids (WTA), a major component of Gram-positive bacterial cell walls. Tandem mass spectrometry (ESI-MS/MS) of purified and chemically hydrolyzed monomeric WTA components provided sufficient information to identify WTA monomers and their specific carbohydrate constituents. A lithium matrix was used for ionization of uncharged WTA monomers, and successfully applied to analyze the WTA molecules of four Listeria strains differing in carbohydrate substitution on a conserved polyribitol-phosphate backbone structure. Carbohydrate residues such as N-acetylglucosamine or rhamnose linked to the WTA could directly be identified by ESI-MS/MS, circumventing the need for quantitative analysis by gas chromatography. The presence of a terminal N-acetylglucosamine residue tethered to the ribitol was confirmed using fluorescently labeled wheat-germ agglutinin. In conclusion, the mass spectrometry method described here will greatly facilitate compositional analysis and characterization of teichoic acids and similar macromolecules from diverse bacterial species, and represents a significant advance in the identification of serovar-specific carbohydrates and sugar molecules on bacteria

    Inactivation of DltA Modulates Virulence Factor Expression in Streptococcus pyogenes

    Get PDF
    D-alanylated lipoteichoic acid is a virtually ubiquitous component of gram-positive cell walls. Mutations in the dltABCD operon of numerous species exhibit pleiotropic effects, including reduced virulence, which has been attributed to increased binding of cationic antimicrobial peptides to the more negatively charged cell surface. In this study, we have further investigated the effects that mutating dltA has on virulence factor expression in Streptococcus pyogenes.Isogenic Delta dltA mutants had previously been created in two distinct M1T1 isolates of S. pyogenes. Immunoblots, flow cytometry, and immunofluorescence were used to quantitate M protein levels in these strains, as well as to assess their ability to bind complement. Bacteria were tested for their ability to interact with human PMN and to grow in whole human blood. Message levels for emm, sic, and various regulatory elements were assessed by quantitative RT-PCR. Cell walls of Delta dltA mutants contained much less M protein than cell walls of parent strains and this correlated with reduced levels of emm transcripts, increased deposition of complement, increased association of bacteria with polymorphonuclear leukocytes, and reduced bacterial growth in whole human blood. Transcription of at least one other gene of the mga regulon, sic, which encodes a protein that inactivates antimicrobial peptides, was also dramatically reduced in Delta dltA mutants. Concomitantly, ccpA and rofA were unaffected, while rgg and arcA were up-regulated.This study has identified a novel mechanism for the reduced virulence of dltA mutants of Streptococcus pyogenes in which gene regulatory networks somehow sense and respond to the loss of DltA and lack of D-alanine esterification of lipoteichoic acid. The mechanism remains to be determined, but the data indicate that the status of D-alanine-lipoteichoic acid can significantly influence the expression of at least some streptococcal virulence factors and provide further impetus to targeting the dlt operon of gram-positive pathogens in the search for novel antimicrobial compounds

    N-Terminal Gly224–Gly411 Domain in Listeria Adhesion Protein Interacts with Host Receptor Hsp60

    Get PDF
    Listeria adhesion protein (LAP) is a housekeeping bifunctional enzyme consisting of N-terminal acetaldehyde dehydrogenase (ALDH) and C-terminal alcohol dehydrogenase (ADH). It aids Listeria monocytogenes in crossing the epithelial barrier through a paracellular route by interacting with its host receptor, heat shock protein 60 (Hsp60). To gain insight into the binding interaction between LAP and Hsp60, LAP subdomain(s) participating in the Hsp60 interaction were investigated.Using a ModBase structural model, LAP was divided into 4 putative subdomains: the ALDH region contains N1 (Met(1)-Pro(223)) and N2 (Gly(224)-Gly(411)), and the ADH region contains C1 (Gly(412)-Val(648)) and C2 (Pro(649)-Val(866)). Each subdomain was cloned and overexpressed in Escherichia coli and purified. Purified subdomains were used in ligand overlay, immunofluorescence, and bead-based epithelial cell adhesion assays to analyze each domain's affinity toward Hsp60 protein or human ileocecal epithelial HCT-8 cells.The N2 subdomain exhibited the greatest affinity for Hsp60 with a K(D) of 9.50±2.6 nM. The K(D) of full-length LAP (7.2±0.5 nM) to Hsp60 was comparable to the N2 value. Microspheres (1 µm diameter) coated with N2 subdomain showed significantly (P<0.05) higher binding to HCT-8 cells than beads coated with other subdomains and this binding was inhibited when HCT-8 cells were pretreated with anti-Hsp60 antibody to specifically block epithelial Hsp60. Furthermore, HCT-8 cells pretreated with purified N2 subdomain also reduced L. monocytogenes adhesion by about 4 log confirming its involvement in interaction with epithelial cells.These data indicate that the N2 subdomain in the LAP ALDH domain is critical in initiating interaction with mammalian cell receptor Hsp60 providing insight into the molecular mechanism of pathogenesis for the development of potential anti-listerial control strategies

    How Listeria monocytogenes organizes its surface for virulence

    Get PDF
    Listeria monocytogenes is a Gram-positive pathogen responsible for the manifestation of human listeriosis, an opportunistic foodborne disease with an associated high mortality rate. The key to the pathogenesis of listeriosis is the capacity of this bacterium to trigger its internalization by non-phagocytic cells and to survive and even replicate within phagocytes. The arsenal of virulence proteins deployed by L. monocytogenes to successfully promote the invasion and infection of host cells has been progressively unveiled over the past decades. A large majority of them is located at the cell envelope, which provides an interface for the establishment of close interactions between these bacterial factors and their host targets. Along the multistep pathways carrying these virulence proteins from the inner side of the cytoplasmic membrane to their cell envelope destination, a multiplicity of auxiliary proteins must act on the immature polypeptides to ensure that they not only maturate into fully functional effectors but also are placed or guided to their correct position in the bacterial surface. As the major scaffold for surface proteins, the cell wall and its metabolism are critical elements in listerial virulence. Conversely, the crucial physical support and protection provided by this structure make it an ideal target for the host immune system. Therefore, mechanisms involving fine modifications of cell envelope components are activated by L. monocytogenes to render it less recognizable by the innate immunity sensors or more resistant to the activity of antimicrobial effectors. This review provides a state-of-the-art compilation of the mechanisms used by L. monocytogenes to organize its surface for virulence, with special focus on those proteins that work "behind the frontline", either supporting virulence effectors or ensuring the survival of the bacterium within its host.We apologize to authors whose relevant work could not be cited owing to space limitations. Research in the group of Molecular Microbiology is funded by the project "NORTE-07-0124-FEDER-000002-Host-Pathogen Interactions" co-funded by Programa Operacional Regional do Norte (ON.2-O Novo Norte), under the Quadro de Referencia Estrategico Nacional (QREN), through the Fundo Europeu de Desenvolvimento Regional (FEDER), the Operational Competitiveness Programme (COMPETE) and FCT (Fundacdo para a Ciencia e Tecnologia), and by projects ERANet Pathogenomics LISTRESS ERA-PTG/0003/2010, PTDC/SAU-MIC/111581/2009FCOMP-FEDER, PTDC/BIA-BCM/100088/2008FCOMP-01-0124-FEDER-008860 and PTDC/BIA-BCM/111215/2009FCOMP-01-0124-FEDER-014178. Filipe Carvalho was supported by FCT doctoral grant SFRH1BD16182512009, and Sandra Sousa by the Ciencia 2008 and FCT-Investigator programs (COMPETE, POPH, and FCT)

    Identification of Fusarium species involved in human infections by 28S rRNA gene sequencing36686

    No full text
    Fusarium spp. have emerged as major opportunistic fungal agents. Since new antifungal agents exhibit variable activity against Fusarium isolates depending on the species, rapid identification at the species level is required. Conventional culture methods are difficult, fastidious, and sometimes inconclusive. In this work, we sequenced a 440-bp fragment encoding the 28S rRNA from 33 Fusarium isolates belonging to six Fusarium species associated with human infections. The data were then analyzed by the neighbor-joining method. By using distance matrix analysis and constructing the phylogram, we could easily distinguish the different species for all but one isolate. The method also allowed differentiation between the closely related genera Acremonium and Cylindrocarpon. In contrast to the case with conventional methods, the results could be obtained within 48 h from a 3-day culture and are independent of mycologist experience, making this method rapid and reliable for identification of Fusarium species isolated from patients</p

    Gram-positive three-component antimicrobial peptide-sensing system

    No full text
    To survive during colonization or infection of the human body, microorganisms must circumvent mechanisms of innate host defense. Antimicrobial peptides represent a key component of innate host defense, especially in phagocytes and on epithelial surfaces. However, it is not known how the clinically important group of Gram-positive bacteria sense antimicrobial peptides to coordinate a directed defensive response. By determining the genome-wide gene regulatory response to human β-defensin 3 in the nosocomial pathogen Staphylococcus epidermidis, we discovered an antimicrobial peptide sensor system that controls major specific resistance mechanisms of Gram-positive bacteria and is unrelated to the Gram-negative PhoP/PhoQ system. It contains a classical two-component signal transducer and an unusual third protein, all of which are indispensable for signal transduction and antimicrobial peptide resistance. Furthermore, our data indicate that a very short, extracellular loop with a high density of negative charges in the sensor protein is responsible for antimicrobial peptide binding and the observed specificity for cationic antimicrobial peptides. Our study shows that Gram-positive bacteria have developed an efficient and unique way of controlling resistance mechanisms to antimicrobial peptides, which may provide a promising target for antimicrobial drug development
    corecore