181 research outputs found

    Calibration of the ASTRI SST-2M Prototype using Muon Ring Images

    Get PDF
    The study of ring images generated from high-energy muons is a very useful tool for the performance monitoring and calibration of any Imaging Atmosphere Cherenkov Telescope. Isolated muons travelling towards the telescope light collector system produce characteristic Cherenkov ring images in the focal plane camera. Since the geometry and the distribution of light deployed onto the camera can be easily reconstructed analytically for a muon of given energy and direction, muon rings are a powerful tool for monitoring the behaviour of crucial properties of an imaging telescope such as the point-spread-function and the overall light collection efficiency. In this contribution we present the possibility of using the analysis of muon ring images as calibrator for the ASTRI SST-2M prototype point spread function

    A novel method for the absolute fluorescence yield measurement by AIRFLY

    Get PDF
    One of the goals of the AIRFLY (AIR FLuorescence Yield) experiment is to measure the absolute fluorescence yield induced by electrons in air to better than 10% precision. We introduce a new technique for measurement of the absolute fluorescence yield of the 337 nm line that has the advantage of reducing the systematic uncertainty due to the detector calibration. The principle is to compare the measured fluorescence yield to a well known process - the Cerenkov emission. Preliminary measurements taken in the BFT (Beam Test Facility) in Frascati, Italy with 350 MeV electrons are presented. Beam tests in the Argonne Wakefield Accelerator at the Argonne National Laboratory, USA with 14 MeV electrons have also shown that this technique can be applied at lower energies.Comment: presented at the 5th Fluorescence Workshop, El Escorial - Madrid, Spain, 16 - 20 September 200

    Temperature and Humidity Dependence of Air Fluorescence Yield measured by AIRFLY

    Get PDF
    The fluorescence detection of ultra high energy cosmic rays requires a detailed knowledge of the fluorescence light emission from nitrogen molecules over a wide range of atmospheric parameters, corresponding to altitudes typical of the cosmic ray shower development in the atmosphere. We have studied the temperature and humidity dependence of the fluorescence light spectrum excited by MeV electrons in air. Results for the 313.6 nm, 337.1 nm, 353.7 nm and 391.4 nm bands are reported in this paper. We found that the temperature and humidity dependence of the quenching process changes the fluorescence yield by a sizeable amount (up to 20%) and its effect must be included for a precise estimation of the energy of ultra high energy cosmic rays.Comment: presented at the 5th Fluorescence Workshop, El Escorial - Madrid, Spain, 16 - 20 September 2007, to appear in Nuclear Instruments and Methods

    Expected performance of the ASTRI-SST-2M telescope prototype

    Full text link
    ASTRI (Astrofisica con Specchi a Tecnologia Replicante Italiana) is an Italian flagship project pursued by INAF (Istituto Nazionale di Astrofisica) strictly linked to the development of the Cherenkov Telescope Array, CTA. Primary goal of the ASTRI program is the design and production of an end-to-end prototype of a Small Size Telescope for the CTA sub-array devoted to the highest gamma-ray energy region. The prototype, named ASTRI SST-2M, will be tested on field in Italy during 2014. This telescope will be the first Cherenkov telescope adopting the double reflection layout in a Schwarzschild-Couder configuration with a tessellated primary mirror and a monolithic secondary mirror. The collected light will be focused on a compact and light-weight camera based on silicon photo-multipliers covering a 9.6 deg full field of view. Detailed Monte Carlo simulations have been performed to estimate the performance of the planned telescope. The results regarding its energy threshold, sensitivity and angular resolution are shown and discussed.Comment: In Proceedings of the 33rd International Cosmic Ray Conference (ICRC2013), Rio de Janeiro (Brazil). All CTA contributions at arXiv:1307.223

    Measurement of the Depth of Maximum of Extensive Air Showers above 10^18 eV

    Get PDF
    We describe the measurement of the depth of maximum, Xmax, of the longitudinal development of air showers induced by cosmic rays. Almost four thousand events above 10^18 eV observed by the fluorescence detector of the Pierre Auger Observatory in coincidence with at least one surface detector station are selected for the analysis. The average shower maximum was found to evolve with energy at a rate of (106 +35/-21) g/cm^2/decade below 10^(18.24 +/- 0.05) eV and (24 +/- 3) g/cm^2/decade above this energy. The measured shower-to-shower fluctuations decrease from about 55 to 26 g/cm^2. The interpretation of these results in terms of the cosmic ray mass composition is briefly discussed.Comment: Accepted for publication by PR

    The Pierre Auger Observatory III: Other Astrophysical Observations

    Full text link
    Astrophysical observations of ultra-high-energy cosmic rays with the Pierre Auger ObservatoryComment: Contributions to the 32nd International Cosmic Ray Conference, Beijing, China, August 201
    corecore