25 research outputs found

    SBDS Expression and Localization at the Mitotic Spindle in Human Myeloid Progenitors

    Get PDF
    BACKGROUND: Shwachman-Diamond Syndrome (SDS) is a hereditary disease caused by mutations in the SBDS gene. SDS is clinically characterized by pancreatic insufficiency, skeletal abnormalities and bone marrow dysfunction. The hematologic abnormalities include neutropenia, neutrophil chemotaxis defects, and an increased risk of developing Acute Myeloid Leukemia (AML). Although several studies have suggested that SBDS as a protein plays a role in ribosome processing/maturation, its impact on human neutrophil development and function remains to be clarified. METHODOLOGY/PRINCIPAL FINDINGS: We observed that SBDS RNA and protein are expressed in the human myeloid leukemia PLB-985 cell line and in human hematopoietic progenitor cells by quantitative RT-PCR and Western blot analysis. SBDS expression is downregulated during neutrophil differentiation. Additionally, we observed that the differentiation and proliferation capacity of SDS-patient bone marrow hematopoietic progenitor cells in a liquid differentiation system was reduced as compared to control cultures. Immunofluorescence analysis showed that SBDS co-localizes with the mitotic spindle and in vitro binding studies reveal a direct interaction of SBDS with microtubules. In interphase cells a perinuclear enrichment of SBDS protein which co-localized with the microtubule organizing center (MTOC) was observed. Also, we observed that transiently expressed SDS patient-derived SBDS-K62 or SBDS-C84 mutant proteins could co-localize with the MTOC and mitotic spindle. CONCLUSIONS/SIGNIFICANCE: SBDS co-localizes with the mitotic spindle, suggesting a role for SBDS in the cell division process, which corresponds to the decreased proliferation capacity of SDS-patient bone marrow CD34(+) hematopoietic progenitor cells in our culture system and also to the neutropenia in SDS patients. A role in chromosome missegregation has not been clarified, since similar spatial and time-dependent localization is observed when patient-derived SBDS mutant proteins are studied. Thus, the increased risk of myeloid malignancy in SDS remains unexplained

    Evaluation of high-throughput genomic assays for the Fc gamma receptor locus

    Get PDF
    Cancer immunotherapy has been revolutionised by the use of monoclonal antibodies (mAb) that function through their interaction with Fc gamma receptors (FcΞ³Rs). The low-affinity FcΞ³R genes are highly homologous, map to a complex locus at 1p23 and harbour single nucleotide polymorphisms (SNPs) and copy number variation (CNV) that can impact on receptor function and response to therapeutic mAbs. This complexity can hinder accurate characterisation of the locus. We therefore evaluated and optimised a suite of assays for the genomic analysis of the FcΞ³R locus amenable to peripheral blood mononuclear cells and formalin-fixed paraffin-embedded (FFPE) material that can be employed in a high-throughput manner. Assessment of TaqMan genotyping for FCGR2A-131H/R, FCGR3A-158F/V and FCGR2B-232I/T SNPs demonstrated the need for additional methods to discriminate genotypes for the FCGR3A-158F/V and FCGR2B-232I/T SNPs due to sequence homology and CNV in the region. A multiplex ligation-dependent probe amplification assay provided high quality SNP and CNV data in PBMC cases, but there was greater data variability in FFPE material in a manner that was predicted by the BIOMED-2 multiplex PCR protocol. In conclusion, we have evaluated a suite of assays for the genomic analysis of the FcΞ³R locus that are scalable for application in large clinical trials of mAb therapy. These assays will ultimately help establish the importance of FcΞ³R genetics in predicting response to antibody therapeutics

    Clostridial Glucosylating Toxins Enter Cells via Clathrin-Mediated Endocytosis

    Get PDF
    Clostridium difficile toxin A (TcdA) and toxin B (TcdB), C. sordellii lethal toxin (TcsL) and C. novyi Ξ±-toxin (TcnA) are important pathogenicity factors, which represent the family of the clostridial glucosylating toxins (CGTs). Toxin A and B are associated with antibiotic-associated diarrhea and pseudomembraneous colitis. Lethal toxin is involved in toxic shock syndrome after abortion and Ξ±-toxin in gas gangrene development. CGTs enter cells via receptor-mediated endocytosis and require an acidified endosome for translocation of the catalytic domain into the cytosol. Here we studied the endocytic processes that mediate cell internalization of the CGTs. Intoxication of cells was monitored by analyzing cell morphology, status of Rac glucosylation in cell lysates and transepithelial resistance of cell monolayers. We found that the intoxication of cultured cells by CGTs was strongly delayed when cells were preincubated with dynasore, a cell-permeable inhibitor of dynamin, or chlorpromazine, an inhibitor of the clathrin-dependent endocytic pathway. Additional evidence about the role of clathrin in the uptake of the prototypical CGT family member toxin B was achieved by expression of a dominant-negative inhibitor of the clathrin-mediated endocytosis (Eps15 DN) or by siRNA against the clathrin heavy chain. Accordingly, cells that expressed dominant-negative caveolin-1 were not protected from toxin B-induced cell rounding. In addition, lipid rafts impairment by exogenous depletion of sphingomyelin did not decelerate intoxication of HeLa cells by CGTs. Taken together, our data indicate that the endocytic uptake of the CGTs involves a dynamin-dependent process that is mainly governed by clathrin

    FcΞ³ Receptors in Solid Organ Transplantation.

    Get PDF
    In the current era, one of the major factors limiting graft survival is chronic antibody-mediated rejection (ABMR), whilst patient survival is impacted by the effects of immunosuppression on susceptibility to infection, malignancy and atherosclerosis. IgG antibodies play a role in all of these processes, and many of their cellular effects are mediated by Fc gamma receptors (FcΞ³Rs). These surface receptors are expressed by most immune cells, including B cells, natural killer cells, dendritic cells and macrophages. Genetic variation in FCGR genes is likely to affect susceptibility to ABMR and to modulate the physiological functions of IgG. In this review, we discuss the potential role played by FcΞ³Rs in determining outcomes in solid organ transplantation, and how genetic polymorphisms in these receptors may contribute to variations in transplant outcome.MRC is supported by the NIHR Cambridge BRC, the NIHR Blood and Transplant Research Unit (Cambridge) and by a Medical Research Council New Investigator Grant (MR/N024907/1).This is the final version of the article. It first appeared from Springer via https://doi.org/10.1007/s40472-016-0116-

    A novel splice variant of FcgammaRIIa: A risk factor for anaphylaxis in patients with hypogammaglobulinemia

    No full text
    Contains fulltext : 116529.pdf (publisher's version ) (Closed access)BACKGROUND: Our index case was a patient with common variable immunodeficiency (CVID). She had anaphylactoid reactions on administration of intravenous immunoglobulin (IVIg) associated with the presence of IgG antibodies against IgA. OBJECTIVE: We sought to determine the role of Fcgamma receptor (FcgammaR) IIa in IVIg-induced anaphylactoid reactions. METHODS: Neutrophils and PBMCs were isolated from healthy subjects and IVIg-treated patients. FcgammaRIIa mRNA and DNA were analyzed by using real-time PCR and sequencing. IgG-mediated elastase release and intracellular Ca(2+) mobilization were determined in neutrophils and transfected cell lines, respectively. RESULTS: A novel splice variant of FcgammaRIIa containing an expressed cryptic exon 6* (FcgammaRIIa(exon6 *)) was identified in our index patient. This exon is normally spliced out of all FcgammaRII isoforms, except the inhibitory FcgammaRIIb1. Compared with healthy control subjects, the heterozygous FCGR2A(c.742+871A>G) mutation was more frequent in patients with CVID (n = 53, P G) allele-positive patients with Kawasaki disease (n = 208) and 1 patient with idiopathic thrombocytopenia (n = 93). None had adverse reactions to IVIg. Moreover, FcgammaRIIa(exon6 *) was also demonstrated in asymptomatic family members. Functional studies in primary cells and transfected murine cells demonstrated enhanced cellular activation by FcgammaRIIa(exon6 *) compared with its native form, as shown by increased elastase release and intracellular calcium mobilization. CONCLUSION: A novel splice variant, FcgammaRIIa(exon6 *), was characterized as a low-frequency allele, coding for a gain-of-function receptor for IgG. In the presence of immune complexes, FcgammaRIIa(exon6 *) can contribute to anaphylaxis in patients with CVID

    Case-Control Breast Cancer Study of MALDI-TOF Proteomic Mass Spectrometry Data on Serum Samples

    No full text
    We introduce mass spectrometry proteomic research for diagnosis from a clinical perspective, with special reference to early-stage breast cancer detection. The nature of SELDI and MALDI mass spectrometric measurement is discussed. We explain how the mass spectral data arising from this technology may be viewed as a new data type. Some of the properties of the data are discussed and we show how such spectra may be interpreted. Sample preprocessing for mass spectrometry is introduced and a literature review of research in clinical proteomics is presented. Finally, we provide a detailed description of the study design on the breast cancer case-control study which is investigated in this special issue.

    The Influence of Hospital Volume on Circumferential Resection Margin Involvement: Results of the Dutch Surgical Colorectal Audit

    No full text
    This population-based study evaluates the association between hospital volume and CRM (circumferential resection margin) involvement, adjusted for other confounders, in rectal cancer surgery. A low hospital volume ( <20 cases/year) was independently associated with a higher risk of CRM involvement (odds ratio=1.54; 95% CI: 1.12-2.11). To evaluate the association between hospital volume and CRM (circumferential resection margin) involvement in rectal cancer surgery. To guarantee the quality of surgical treatment of rectal cancer, the Association of Surgeons of the Netherlands has stated a minimal annual volume standard of 20 procedures per hospital. The influence of hospital volume has been examined for different outcome variables in rectal cancer surgery. Its influence on the pathological outcome (CRM) however remains unclear. As long-term outcomes are best predicted by the CRM status, this parameter is of essential importance in the debate on the justification of minimal volume standards in rectal cancer surgery. Data from the Dutch Surgical Colorectal Audit (2011-2012) were used. Hospital volume was divided into 3 groups, and baseline characteristics were described. The influence of hospital volume on CRM involvement was analyzed, in a multivariate model, between low- and high-volume hospitals, according to the minimal volume standards. This study included 5161 patients. CRM was recorded in 86% of patients. CRM involvement was 11% in low-volume group versus 7.7% and 7.9% in the medium- and high-volume group (P≀0.001). After adjustment for relevant confounders, the influence of hospital volume on CRM involvement was still significant odds ratio (OR) = 1.54; 95% CI: 1.12-2.11). The outcomes of this pooled analysis support minimal volume standards in rectal cancer surgery. Low hospital volume was independently associated with a higher risk of CRM involvement (OR = 1.54; 95% CI: 1.12-2.11
    corecore