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Abstract In the current era, one of the major factors limiting
graft survival is chronic antibody-mediated rejection (ABMR),
whilst patient survival is impacted by the effects of immunosup-
pression on susceptibility to infection, malignancy and athero-
sclerosis. IgG antibodies play a role in all of these processes, and
many of their cellular effects are mediated by Fc gamma recep-
tors (FcγRs). These surface receptors are expressed by most
immune cells, including B cells, natural killer cells, dendritic
cells and macrophages. Genetic variation in FCGR genes is
likely to affect susceptibility to ABMR and to modulate the
physiological functions of IgG. In this review, we discuss the
potential role played by FcγRs in determining outcomes in solid
organ transplantation, and how genetic polymorphisms in these
receptors may contribute to variations in transplant outcome.
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Introduction

Immunoglobulin G (IgG) antibodies are the most abundant
immunoglobulin isotype in human serum and extracellular

tissue fluid. They play an important role in defence against
infection via pathogen neutralisation and opsonisation and
complement activation, and can directly stimulate a wide va-
riety of immune cells by cross-linking cell surface Fc gamma
receptors (FcγRs) [1, 2]. However, autoantibodies are patho-
genic in a number of autoimmune diseases [3, 4] and in solid
organ transplantation alloantibodies are associated with
antibody-mediated rejection (ABMR) [5, 6]. Indeed, in the
current era, the presence of donor-specific anti-HLA antibod-
ies (DSA) represents a major hurdle in transplantation.
Sensitised transplant recipients with pre-formed DSA now
make up a third of wait-listed kidney transplant recipients,
and have a significantly increased risk of acute and chronic
ABMR, resulting in reduced allograft survival [7, 8]. In non-
sensitised subjects, the development of de novo DSA is also
associated with worse outcome, particularly if they occur
many years after the transplant [9, 10].

With accumulating evidence of the deleterious effects of IgG
DSA on long-term allograft survival, there has been increased
interest inunderstandingthemechanismsthatdrivetissuedamage
in the context ofABMR.The observation of CD4d deposition in
theperitubular capillariesofbiopsieswithhistological changesof
ABMR andDSA led to the assumption that complement activa-
tion plays a key role in antibody-associated allograft damage.
However, the absence of C4d staining in more than half of biop-
sies with late ABMR highlights the importance of complement-
independent mechanisms in mediating the deleterious effects of
DSAs[11,12].Furthermore,someIgGisotypes(IgG4)cannot fix
complement, whilst IgG2 has a limited complement-activating
capacitycomparedwithIgG1andIgG3[13].Reedandcolleagues
have produced an elegant body ofwork demonstrating that HLA
antibodies canhavedirect effectsonallograft endothelial cells via
variable region binding [14], but the engagement of FcγRs on
immune cells and on endothelium is also likely to be of critical
importance in generating alloantibody associated inflammation
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(Fig. 1a). FcγRs bind to the Fc portion of IgG and mediate the
activation of both innate and adaptive immune cells. Variation in
thegenesencodingthesereceptorscanalter IgGbindingtoFcγRs
and receptor activity, andmay therefore influence themagnitude
of inflammation induced by alloantibodies as well as the risk of
developing alloantibodies.

Although chronic ABMR represents a major challenge to
graft survival, one of the commonest causes of graft loss in the
long-term is death of the transplant recipient with a function-
ing graft. This most frequently occurs in the context of infec-
tion, malignancy or cardiovascular disease, all of which may
be influenced by humoral immunity. In the case of infection
and malignancy, IgG antibodies may have beneficial effects
[15, 16], whilst in atherosclerosis their function is less clear
[17–19], with FcγRs again playing a key role.

In this review, we discuss the impact of FcγRs on immune
cell activation and consider their potential impact in transplant
rejection and recipient survival. Given the clinical and thera-
peutic similarities between ABMR and IgG-mediated autoim-
mune diseases, such as systemic lupus erythematosus (SLE),
many of the data identifying the cellular mechanisms under-
pinning the pathogenic effects of antibody may inform discus-
sions. We will therefore also consider this evidence, where
relevant to antibody-mediated pathology in transplantation.

Fcγ Receptors—Overview and Cell Distribution

FcγRs are cell surface molecules that bind to the Fc portion of
IgG antibodies to initiate intracellular signalling pathways,

Fig. 1 Human Fcγ receptors. a FcγRs in antibody-mediated rejection.
DSA deposition within allografts can stimulate numerous pro-
inflammatory mechanisms, including the direct activation of graft
endothelium (i), complement activation via the classical pathway (ii),
and the activation of FcγR-expressing immune cells. b Human FcγRs
family members differ in IgG affinity, cellular distribution and signalling
mechanisms. There are five activating FcγRs that signal via
immunoreceptor tyrosine-based activation motifs (ITAM), four with
low IgG affinity (FcγRIIA, FcγRIIC, FcγRIIIA and FcγRIIIB) and

one with high affinity (FcγRI), capable of binding monomeric IgG.
There is a single inhibitory receptor, FcγRIIB, with an intracellular
immunoreceptor tyrosine-based inhibitory motif (ITIM). c Cellular
distribution and function of FcγRs—FcγRs are expressed across numer-
ous immune cells implicated in ABMR, and promote cell type-
specific immunological mechanisms that could contribute to allograft
rejection, including endothelial adhesion, ADCC, pro-inflammatory
cytokine production and ROS production
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leading to immune cell maturation and activation. In humans,
there are several activating receptors (FcγRIIA, FcγRIIC,
FcγRIIIA and FcγRIIIB) and a single inhibitory receptor,
FcγRIIB, which plays a critical role in suppressing IgG-
mediated inflammation [1, 20] (Fig. 1b). FcγRs are widely
expressed on immune cells, including neutrophils, monocytes,
macrophages, dendritic cells (DCs), mast cells, natural killer
(NK) cells and B cells, but the type of FcγRs expressed differs
between cell types (Fig. 1c). Notably, T cells do not express
FcγRs. In addition to binding IgG, FcγRIIA can also bind to
acute phase response proteins, C-reactive protein (CRP) [21•]
and serum amyloid P (SAP) [22].

Most FcγRs are low-to-medium affinity for IgG, requiring
cross-linking of several receptors into signalling synapses on
the cell surface in order to initiate productive signalling. This
is achieved through the formation of high avidity immune
complexes (IC) between antigen and antigen-specific IgG or
by IgG-opsonised cells. The absence of signalling upon liga-
tion of monomeric IgG prevents inappropriate immune cell
activation, which is critical, given the abundance of circulat-
ing monomeric IgG. The inhibitory receptor, FcγRIIB, acts as
an additional regulatory mechanism to suppress IgG-mediated
inflammation, although its expression is heterogeneous across
cells of the immune system and subject to regulation by var-
ious stimuli, particularly by the cytokine milieu [23, 24]. For
example, Th2 cytokines such as IL-4 and IL-33 increase
monocyte expression of FcγRIIB [23, 25••], whilst
interferon-γ (IFNγ) leads to a reduction in FcγRIIB expres-
sion on monocytes and DCs [26]. The ratio of activating to
inhibitory FcγRs on any given cell is known as the activating/
inhibitory (A/I) ratio, and its context-specific modulation al-
lows for appropriate immune responses to be raised [1, 27].
Genetic polymorphisms in human FCGR genes that alter re-
ceptor expression or function are frequently associated with
differential susceptibility to both infection and autoimmunity
[15, 20, 27]. Genetic variation in FcγRs is not the only factor
that influences the outcome for a cell encountering IgG im-
mune complexes; differences in IgG glycosylation can alter
affinity for activating versus inhibitory FcγRs [28–31]; for
example, de-fucosylation increases the binding affinity of
IgG for activating FcγRIIIA (but not FcγRIIB) 10–50 fold
[32]. Data indicate abnormalities in the IgG glycome in some
patients with SLE, with a reduction in galactosylation and
sialylation of IgG that might potentially favour binding to
activating FcγR [33]. A reduction in galactosylation has also
been observed in patients with rheumatoid arthritis [34], but
there is currently no information on whether differences in the
glyosylation state of DSA might impact their pathogenicity.

FcγR Signalling

Activating FcγR cross-linking leads to tyrosine phosphoryla-
tion of the immunoreceptor tyrosine-based activating motif

(ITAM) within the associated common Fcγ chain by the
Src-kinases Lyn and subsequent recruitment of SH2-
containing kinases [35]. This ultimately leads to the activation
of phosphatidylinositol3-kinase (PI3-K) and phospholipase-
Cγ (PLCγ), which trigger protein kinase C (PKC) and a cal-
cium flux. The downstream effect of this activating signalling
cascade varies between immune cells (Fig. 1c).

In contrast to activating FcγRs, FcγRIIB contains an intra-
cellular immunoreceptor tyrosine-based inhibitory motif
(ITIM). Cross-linking of FcγRIIB with activating FcγR leads
to ITIM phosphorylation by Src kinases, recruiting inositol
phosphatases, most notably SHIP1, to neutralise activating
signals [36]. Thus, activation and inhibitory FcγRs are
co-expressed on the majority of immune cells, and their
relatively level of expression allows the cell to modulate
the activation threshold of a cell encountering immune
complexes. FcγRIIB dysfunction, therefore, has the po-
tential to mediate numerous inflammatory processes in
ABMR, including the persistence of DSA-producing
plasma cells in the periphery and the local activation
of infiltrating immune cells within the allografts.

FcγR Function in Immune Cells

A number of immune cells have been implicated in the path-
ogenesis of ABMR, including neutrophils, macrophages, and
NK cells. FcγR cross-linking by IgG IC are known to pro-
foundly impact the function of these cells. Furthermore, hu-
man endothelial cells can also express FcγRs [37].

Neutrophils Human neutrophils constitutively express
FcγRIIA and FcγRIIIB, a GPI-linked receptor. Non-
activated neutrophils express FcγRIIB2 mRNA [23, 38] but
minimal cell-surface levels of FcγRIIB2 [39•]. Similarly, in
mouse neutrophils, there is low fcgr2b mRNA in bone mar-
row and blood neutrophils, but expression is significantly in-
creased following activation [40]. Cross-linking of activating
FcγRs on neutrophils leads to phagocytosis, cytokine and
superoxide production, increased neutrophil adhesion to en-
dothelial cells and neutrophil extracellular trap formation
(NETosis) [41–46].

MacrophagesMacrophages are myeloid cells specialised for
phagocytosis that may be tissue-resident (including Kupffer
cells in the liver and alveolar macrophages in the lungs) or
may differentiate from newly recruited monocytes during lo-
cal inflammation. Most tissue-resident macrophages express
activating FcγRs (FcγRIIA and FcγRIIIA) and FcγRIIB,
with the balance tipped in favour of activating FcγR expres-
sion. Engagement of activating FcγRs in macrophages results
in phagocytosis and cytokine release (including tumour necro-
sis factor (TNF), IL-6, IL-1α and neutrophil chemoattractants)
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[47], and the magnitude of this response is controlled by
FcγRIIB [48–51].

Dendritic Cells DCs express FcγRIIA and FcγRIIIA but in
contrast to macrophages, in immature DCs, expression of the
inhibitory FcγRIIB dominates. DC maturation signals, such
as LPS or IFN-γ, down-regulate FcγRIIB such that IgG-
opsonised antigen may be rapidly internalised by activating
FcγRs and processed for presentation to T cells, and results in
the production of inflammatory cytokines [26, 52, 53].
Furthermore, IgG immune complexes promote DC migration
along lymphatics [54••]. FcγRIIB expression on DCs sup-
presses IC-mediated pro-inflammatory cytokine release, T cell
stimulation and migration [55, 54••, 56].

NK Cells FcγRIIC and FcγRIIIA expression by NK cells is
required for antibody-dependent cellular cytotoxicity
(ADCC), whereby cytotoxic granules are released to kill
IgG-opsonised cells, but these cells do not express the inhib-
itory FcγRIIB [57, 58]. As well as ADCC, NK cells undergo
IFN-γ release following FcγR cross-linking.

B Cells and Plasma Cells FcγRIIB is the only FcγR
expressed by B cells, where it cross-links to the B cell receptor
(BCR) to increase the B cell activation threshold and suppress
antibody production [20]. Furthermore, direct cross-linking of
FcγRIIB on the surface of mature B cells and bone marrow-
resident plasma cells can directly mediate apoptosis, thereby
limiting the peripheral pool of antibody-producing cells [59].

Endothelial Cells DSAs can directly mediate endothelial cell
activation and proliferation via binding to surface MHC [60,
61]. These effects may be further augmented by simultaneous
binding to FcγRs, increasing the expression of adhesion mole-
cules that allow leukocyte recruitment [62]. FcγRI and FcγRII
expression on cultured human aortic endothelial cells was
shown to mediate IgG internalisation, cytokine production, up-
regulation of adhesion molecules and activation by CRP in vitro
[63]. Furthermore, FcγRIIB has been implicated in the patho-
genesis of obesity-induced hypertension, via IgG-mediated at-
tenuation of endothelial NO synthase activity [64]. The extent of
FcγR expression on renal endothelial cells is less clear [65].
However, TNF-α and IFN-γ enhance FcγR expression by hu-
man endothelial cells in vitro, and this may have added impor-
tance in the context of allograft rejection [37].

FcγRs and ABMR

There are a number of lines of evidence to suggest that FcγRs
may mediate inflammation in ABMR as follows:

1. Mouse models—Mice deficient in activating FcγRs are
protected from antibody-mediated autoimmune patholo-
gy, whilst those deficient in the inhibitory receptor
FcγRIIB have more aggressive disease [1, 20].
FcγRIIB-deficient mice have been subjected to a murine
cardiac allograft model (BM12 organs into C57BL/6
mice). In this model, a chronic vasculopathy is observed,
analogous to that in human hearts with chronic rejection,
which is driven by autoantibody production. FcγRIIB-
deficient mice demonstrated elevated autoantibody pro-
duction and more severe arteriopathy [66•]. These data
are consistent with the known role for FcγRIIB in regu-
lating B cells, but this study did not dissect the relative
effect of FcγRIIB on B cells versus myeloid cells. Of
note, myeloid-specific FcγRIIB deficiency is sufficient
to exacerbate tissue inflammation in a model of
antibody-mediated glomerulonephritis [67].

2. Histological appearances in ABMR—Although this rep-
resents circumstantial evidence, the classical histological
features of acute renal ABMR demonstrate the presence
of cells known to express FcγRs, including neutrophils
within peritubular capillaries and monocytic infiltration of
the endothelium and glomeruli. Indeed, the presence of
glomerular monocytes in ABMR was associated with
worse outcomes, independent of C4d staining [68, 69]
and in cardiac allografts with ABMR, a significantly in-
creased number of macrophages has been observed [70].
NK cells are present in the microvascular endothelium in
patients with ABMR, a major site of DSA deposition,
where ADCC of endothelial cells may directly contribute
to graft rejection. Furthermore, NK cell-derived IFNγ (a
cytokine known to be produced by NK cells upon FcγR
cross-linking) has been implicated in driving a positive
feedback loop, in which HLA expression on endothelial
cells is enhanced, resulting in further DSA deposition and
local immune cell activation [71, 72].

Expanded lymphatic vasculature andmononuclear cell aggre-
gation, including tertiary lymphoid organs have been observed
within rejected allografts [73]. IgG immune complexes can in-
duce VEGF-A production by macrophages, driving
lymphangiogenesis in vivo, and represents another potential
mechanism bywhichDSAmight impact allograft rejection [74].

3. Transcriptomic signatures in ABMR—FCGR3A tran-
scripts are enriched within renal transplant biopsies, and
correlate with the presence of DSA and ABMR. Given
the enrichment of other NK cell-associated transcripts,
this supports the role of ADCC within chronically
rejecting allografts [71, 72, 75•]. FcγRIIIA is also
expressed by myeloid cells, and an increase in some
macrophage-associated transcripts has also been observed
in ABMR, including CX3CR1 and IL1B, suggesting a
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potential contribution to FcγR-mediated inflammation
within allografts.

4. Genetic association studies in transplantation—A num-
ber of SNPs have been identified in both activating and
inhibitory FcγRs (Table 1). This region of the genome is
also subject to copy number variation. A non-
synonymous SNP in FcγRIIA (rs1801274) encodes a his-
tidine to arginine amino acid substitution in the extracel-
lular domain of the receptor (FcγRIIA-H131R). This is
associated with a significant reduction in the IgG binding
affinity of the receptor. In particular, FcγRIIA-131H is the
only human FcγR that binds IgG2 effectively, whilst
FcγRIIA-131R binds IgG2 weakly. A SNP in FcγRIIIA
(rs396991), encoding a valine for a phenylalanine at ami-
no acid 158 in the extracellular domain of the receptor
(FcγRIIIA-F158V) also significantly impacts IgG bind-
ing. FcγRIIIA-158V has higher affinity for IgG1 and
IgG3 than FcγRIIIA-158F [15, 27].

Several groups have examined activating FcγR SNPs in
kidney transplant recipients, although the number included
in these case-control studies are small [76–80]. Allograft sur-
vival was increased in patients with the FcγRIIA-131R/R ge-
notype [76], but in two subsequent studies this genotype was
associated with acute rejection [78, 79], the latter postulated to
be due to reduced disposal of deposited IgG. No significant
association with FcγRIIIA genotype was observed [79].
Similarly, in a larger study of 200 kidney transplant recipients
who had lost their grafts, the FcγRIIA-131R/R genotype was
associated with early graft loss (<60 months) and shorter graft
survival, particularly in patients who were DSA positive [80].
These genetic data are in contrast to cellular studies demon-
strating that monocytes from individuals with the FcγRIIA-
131H/H genotype adhered more readily to HLA antibody-
activated endothelium compared with FcγRIIA-131R/R
monocytes [62], an effect most obvious in the presence of
IgG2 DSA. The authors propose that the contrasting results
relate to the impact of FCGR SNPs on the efficacy of induc-
tion therapy, but in the study by Valenzuela et al. non-

depleting anti-CD25 antibodies were used, which would not
be influenced by FcγR polymorphisms [62]. These conflict-
ing results certainly emphasise the need for more accurate
phenotyping of patients included in genetic studies of the
FCGR locus. Ideally this would include not only routine
screening for DSA, but also an assessment of the IgG subclass
and the glycosylation of IgG, factors that have a profound
impact on the functional significance of genetic
polymorphisms.

In humans, a number of non-synonymous SNPs have been
identified in the FCGR2B gene, of which, only one occurs at a
notable frequency (rs1050501). This SNP encodes an
isoleucine-to-threonine substitution at position 232 within
the transmembrane domain of the receptor, resulting in loss
of function [81••, 82]. FcγRIIB-232T is a major risk factor for
SLE [83]. Indeed, immune cells isolated from FcγRIIB-232T/
T homozygous individuals display heightened immune re-
sponses to IgG-IC [81••, 84]. However, in a large study of
more than 2800 renal transplant recipients, no association
was observed between the autoimmune-associated SNP
FcγRIIB-232T and allograft or patient survival [85]. While
this supports the hypothesis that FcγRIIIA on NK cells may
be the prominent driver of chronic ABMR (FcγRIIB is not
expressed by NK cells (Fig. 1c), a lack of patient stratification
(including an inability to identify patients with DSA or
ABMR), may have masked any effects.

FcγRs and Recipient Survival

Infection

In murine models, resistance to infection is intimately linked
to FcγR activity [86]. Overall, activating receptor SNPs with
increased IgG binding (FcγRIIA-131H, FcγRIIIA-158V) are
associated with reduced susceptibility to infection [15, 86],
whilst a reduction in FcγRIIB activity increases defence
against bacterial [50, 81••, 87], mycobacterial [88], viral [89]
and parasitic infection [83, 84]. However, the role of human

Table 1 Polymorphisms in
human FcγRs Receptor Alleles Effect

FcγRIIA H/R131 Increased IgG1 and IgG2 affinity (H131)

FcγRIIA-exon 6 Enhanced cellular activation

FcγRIIB I/T232 Impaired inhibitory signalling (T232)

−386G/C
−120T/A

Altered FCGR2B promoter activity

FcγRIIC STOP/Q13 Altered cell surface expression of FcγRIIB/C

FcγRIIIA V/F-158 Reduced antigen affinity (F158)

FcγRIIIB NA1/NA2/SH Increased antigen affinity (NA1)

Increased surface FcγRIIIB expression
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FCGR SNPs on susceptibility to post-transplant infections is
yet to be completely elucidated.

FcγRIIA can also bind to acute phase response pro-
teins [21•, 22] that can opsonise pathogens. Unlike IgG,
FcγRIIA affinity for CRP is actually reduced in indi-
viduals homozygous for FcγRIIA-131H and this may
influence outcomes in infection. In a study of post-
operative infection in liver transplant patients, individ-
uals that were dually homozygous for the FcγRIIA-
131H/H, polymorphism and the polymorphism in
FCGR3A (F/F158 that reduces IgG binding affinity)
were susceptible to blood-borne infections and increased
mortality. This susceptibility was attributed to a reduced
binding and clearance of CRP-opsonised bacteria,
resulting in overwhelming infection [90•].

Malignancy

Malignancies occur at increased frequency in transplant recip-
ients, particularly skin malignancies and those caused by on-
cogenic viruses, including post-transplant lymphoproliferative
disorder (PTLD). Murine models have demonstrated that IgG
opsonised tumour antigens may be effectively processed by
DCs to induce anti-tumour responses in an FcγR-dependent
manner [91, 92, 93••] and that FcγRs may mediate tumour
ADCC [16]. Therefore, it is likely that polymorphisms in hu-
man FcγR genes may contribute to differential susceptibility
and prognosis in patients with post-transplant malignancy.
Indeed, in non-transplant patients with B-cell lymphoma, an
increased prevalence of the low-affinity FcγRIIA-131R/R ge-
notype was observed in subjects with Epstein-Barr virus

Fig. 2 Variation in activating and
inhibitory FcγR expression and
IgG binding affinity alters
inflammation, responses to
infection and antibody
production. SNPs in human
FCGR genes that lead to higher
affinity of activating FcγR for
IgG (FcγRIIA-131H, FcγRIIIA-
158V) or reduced inhibitory
receptor function (FcγRIIB-
232T) result in an increased A/I
ratio. In the presence of deposited
alloantibody, this can drive allo-
graft inflammation through
ADCC, cytokine release, and
immune cell adhesion, as well as
by lowering the threshold for B
cell activation and survival in the
periphery. However, a high A/I
ratio may also promote DSA
clearance by mononuclear
phagocytes, contributing to the
resolution of inflammation and
enhance resistance to secondary
complications, such as infection
and malignancy
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latency and with expression of oncogenic latency proteins [94,
95]. There is also a wealth of evidence demonstrating that
activating FcγR polymorphisms can profoundly influence
the efficacy of therapeutic monoclonal antibodies used for
the treatment of malignancies, including the effect of rituxi-
mab in lymphomas [96].

Atherosclerosis

Evidence suggests that antibodies can be both protective and
pathogenic; immunisation with oxLDL reduces atherosclero-
sis in murine models, likely due to the protective effects of
oxLDL-specific antibodies [17, 18]. In addition, intravenous
immunoglobulin which contains a mixture of polyclonal IgG
from multiple human donors, is also protective in animal
models of atherosclerosis [97], and this effect is dependent
on the Fc region of IgG [98, 99]. In contrast, other studies
highlight the potential pathogenicity of antibodies and B cells
[19, 100, 101]. Murine models support a role for activating
FcγRs in the development of atherosclerosis [102–105] and
suggest that the inhibitory receptor FcγRIIB regulates their
pathogenic effects; both apo-E and LDLR-deficient mice de-
velop a more severe disease in the absence of FcγRIIB [106,
107]. These data raise the possibility that functionally signif-
icant genetic variants of this receptor in humans might con-
tribute to atheroma susceptibility. A significant association
with the rs396991 SNP in FcγRIIIA was demonstrated in
one study; patients homozygous for the FcγRIIIA-V158 allele
(encoding a receptor with a high affinity for IgG) had a sig-
nificantly reduced risk of CAD compared with FcγRIIIA-
F158 homozygotes [108].

Conclusion

FcγRs play an important role in mediating many effec-
tor functions of IgG and genetic variation in these re-
ceptors and may have a complex impact on outcomes in
solid organ transplantation (Fig. 2). The binding of
graft-deposited alloantibodies to activating FcγRs on
neutrophils, monocytes, macrophages and NK cells
may result in inflammation, however could potentially
facilitate clearance with minimal inflammation, depend-
ing on whether there is co-engagement of FcγRIIB.
Furthermore, activating receptor variants with higher af-
finity for IgG might also improve outcomes in infection
and malignancy. This complex balance requires further
investigation in solid organ transplantation, particularly
before efforts to target these receptors are applied
therapeutically.
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