321 research outputs found

    Mfd Protects Against Oxidative Stress in Bacillus Subtilis Independently of its Canonical Function in DNA Repair

    Get PDF
    Background: Previous reports showed that mutagenesis in nutrient-limiting conditions is dependent on Mfd in Bacillus subtilis. Mfd initiates one type of transcription-coupled repair (TCR); this type of repair is known to target bulky lesions, like those associated with UV exposure. Interestingly, the roles of Mfd in repair of oxidative-promoted DNA damage and regulation of transcription differ. Here, we used a genetic approach to test whether Mfd protected B. subtilis from exposure to two different oxidants. Results: Wild-type cells survived tert-butyl hydroperoxide (t-BHP) exposure significantly better than Mfd-deficient cells. This protective effect was independent of UvrA, a component of the canonical TCR/nucleotide excision repair (NER) pathway. Further, our results suggest that Mfd and MutY, a DNA glycosylase that processes 8-oxoG DNA mismatches, work together to protect cells from lesions generated by oxidative damage. We also tested the role of Mfd in mutagenesis in starved cells exposed to t-BHP. In conditions of oxidative stress, Mfd and MutY may work together in the formation of mutations. Unexpectedly, Mfd increased survival when cells were exposed to the protein oxidant diamide. Under this type of oxidative stress, cells survival was not affected by MutY or UvrA. Conclusions: These results are significant because they show that Mfd mediates error-prone repair of DNA and protects cells against oxidation of proteins by affecting gene expression; Mfd deficiency resulted in increased gene expression of the OhrR repressor which controls the cellular response to organic peroxide exposure. These observations point to Mfd functioning beyond a DNA repair factor in cells experiencing oxidative stress

    DNA secondary structures and their contribution to mutagenesis in B. subtilis stationary phase cells

    Full text link
    It is widely known and accepted that the cause of many mutations in cells are generated during the replication process of actively dividing cells, however more recent research has shown that mutations also arise in non growing conditions, a phenomenon known stationary phase mutagenesis. Much of what is known come from studies in eukaryotic and bacterial models. It is proposed that in nongrowing cells, the process of transcription plays an important role in mutagenesis. I will test the hypothesis that secondary structures formed of DNA generated transcription promote mutagenesis. The sequences transcriptiongenerated structures are speculated to be prone to mutations by exposing regions of single stranded DNA to lesions. To test this hypothesis, I examined the Bacillus subtilis gene thiF, predicted by in silico analysis to be prone to mutations at particular locations during transcription. By altering the base sequence of this gene, the stability of its stem-loop structures is affected, thereby allowing us to test whether transcription of the altered sequence influences accumulation of in thiF. Our assay for detection of mutations is based on reversion to thiamine auxotrophy in cells under conditions of starvation. Ultimately, these experiments will increase our understanding of how mutations occur in cells of all domains of life

    Relationships between physiological characteristics and trace metal body burdens of banded garden spiders Argiope trifasciata (Araneae, Araneidae)

    Get PDF
    Banded garden spiders (Argiope trifasciata) were collected at the Ballona Wetlands, a metal contaminated salt marsh. The relationship between spider body size and individual metal loads was investigated. Biochemical markers were identified in spider fecal material and found to correlate to body metal levels. Body metal dry weight concentrations of Cd, Cr, Cu, Zn and total metals in female A. trifasciata exhibited distinct patterns of spatial and annual variation during 2006 and 2007. Spider body size was homogeneous across sites in both years, while increased Cd and Cr concentrations were sometimes associated with a reduction in spider size, though the influence of Cr was quite minor. Spiders with higher body Cu levels showed a reduction in peak area for hypoxanthine and an un-identified component in fecal material chromatograms. Spatial and annual differences in metal bioaccumulation are likely mediated by variation in site-specific environmental parameters and rainfall, while the negative relationships between body size and metal levels are presumably a consequence of a spider\u27s expenditure of energy for metal tolerance mechanisms vs. foraging and growth. Finally, correlating body metal levels with excreta products constitutes a novel method to non-invasively predict metal levels in spiders

    Designing and implementing an assay for the detection of rare and divergent NRPS and PKS clones in European, Antarctic and Cuban soils

    Get PDF
    The ever increasing microbial resistome means there is an urgent need for new antibiotics. Metagenomics is an underexploited tool in the field of drug discovery. In this study we aimed to produce a new updated assay for the discovery of biosynthetic gene clusters encoding bioactive secondary metabolites. PCR assays targeting the polyketide synthases (PKS) and non-ribosomal peptide synthetases (NRPS) were developed. A range of European soils were tested for their biosynthetic potential using clone libraries developed from metagenomic DNA. Results revealed a surprising number of NRPS and PKS clones with similarity to rare Actinomycetes. Many of the clones tested were phylogenetically divergent suggesting they were fragments from novel NRPS and PKS gene clusters. Soils did not appear to cluster by location but did represent NRPS and PKS clones of diverse taxonomic origin. Fosmid libraries were constructed from Cuban and Antarctic soil samples; 17 fosmids were positive for NRPS domains suggesting a hit rate of less than 1 in 10 genomes. NRPS hits had low similarities to both rare Actinobacteria and Proteobacteria; they also clustered with known antibiotic producers suggesting they may encode for pathways producing novel bioactive compounds. In conclusion we designed an assay capable of detecting divergent NRPS and PKS gene clusters from the rare biosphere; when tested on soil samples results suggest the majority of NRPS and PKS pathways and hence bioactive metabolites are yet to be discovere

    Computational and experimental druggability assessment of human DNA glycosylases

    Get PDF
    Due to a polar or even charged binding interface, DNA-binding proteins are considered extraordinarily difficult targets for development of small-molecule ligands and only a handful of proteins have been targeted successfully to date. Recently, however, it has been shown that development of selective and efficient inhibitors of 8-oxoguanine DNA glycosylase is possible. Here, we describe the initial druggability assessment of DNA glycosylases in a computational setting and experimentally investigate several methods to target endonuclease VIII-like 1 (NEIL1) with small-molecule inhibitors. We find that DNA glycosylases exhibit good predicted druggability in both DNA-bound and -unbound states. Furthermore, we find catalytic sites to be highly flexible, allowing for a range of interactions and binding partners. One flexible catalytic site was rationalized for NEIL1 and further investigated experimentally using both a biochemical assay in the presence of DNA and a thermal shift assay in the absence of DNA

    Characterisation of the microbiome along the gastrointestinal tract of growing turkeys

    Get PDF
    The turkey microbiome is largely understudied, despite its relationship with bird health and growth, and the prevalence of human pathogens such as Campylobacter spp. In this study we investigated the microbiome within the small intestine (SI), caeca (C), large intestine (LI) and cloaca (CL) of turkeys at 6, 10 and 16 weeks of age. Eight turkeys were dissected within each age category and the contents of the SI, C, LI and CL were harvested. 16S rDNA based QPCR was performed on all samples and samples for the 4 locations within 3 birds/age group were sequenced using ion torrent-based sequencing of the 16S rDNA. Sequencing data showed on a genus level, an abundance of Lactobacillus, Streptococcus and Clostridium XI (38.2, 28.1 and 13.0% respectively) irrespective of location and age. The caeca exhibited the greatest microbiome diversity throughout the development of the turkey. PICRUSt data predicted an array of bacterial function, with most differences being apparent in the caeca of the turkeys as they matured. QPCR revealed that the caeca within 10 week old birds, contained the most Campylobacter spp. Understanding the microbial ecology of the turkey gastrointestinal tract is essential in terms of understanding production efficiency and in order to develop novel strategies for targeting Campylobacter spppublishersversionPeer reviewe

    The rumen microbiome:An underexplored resource for novel antimicrobial discovery

    Get PDF
    Antimicrobial peptides (AMPs) are promising drug candidates to target multi-drug resistant bacteria. The rumen microbiome presents an underexplored resource for the discovery of novel microbial enzymes and metabolites, including AMPs. Using functional screening and computational approaches, we identified 181 potentially novel AMPs from a rumen bacterial metagenome. Here, we show that three of the selected AMPs (Lynronne-1, Lynronne-2 and Lynronne-3) were effective against numerous bacterial pathogens, including methicillin-resistant Staphylococcus aureus (MRSA). No decrease in MRSA susceptibility was observed after 25 days of sub-lethal exposure to these AMPs. The AMPs bound preferentially to bacterial membrane lipids and induced membrane permeability leading to cytoplasmic leakage. Topical administration of Lynronne-1 (10% w/v) to a mouse model of MRSA wound infection elicited a significant reduction in bacterial counts, which was comparable to treatment with 2% mupirocin ointment. Our findings indicate that the rumen microbiome may provide viable alternative antimicrobials for future therapeutic applicationpublishersversionPeer reviewe

    MutT homologue 1 (MTH1) catalyzes the hydrolysis of mutagenic O6-methyl-dGTP.

    Get PDF
    Nucleotides in the free pool are more susceptible to nonenzymatic methylation than those protected in the DNA double helix. Methylated nucleotides like O6-methyl-dGTP can be mutagenic and toxic if incorporated into DNA. Removal of methylated nucleotides from the nucleotide pool may therefore be important to maintain genome integrity. We show that MutT homologue 1 (MTH1) efficiently catalyzes the hydrolysis of O6-methyl-dGTP with a catalytic efficiency similar to that for 8-oxo-dGTP. O6-methyl-dGTP activity is exclusive to MTH1 among human NUDIX proteins and conserved through evolution but not found in bacterial MutT. We present a high resolution crystal structure of human and zebrafish MTH1 in complex with O6-methyl-dGMP. By microinjecting fertilized zebrafish eggs with O6-methyl-dGTP and inhibiting MTH1 we demonstrate that survival is dependent on active MTH1 in vivo. O6-methyl-dG levels are higher in DNA extracted from zebrafish embryos microinjected with O6-methyl-dGTP and inhibition of O6-methylguanine-DNA methyl transferase (MGMT) increases the toxicity of O6-methyl-dGTP demonstrating that O6-methyl-dGTP is incorporated into DNA. MTH1 deficiency sensitizes human cells to the alkylating agent Temozolomide, a sensitization that is more pronounced upon MGMT inhibition. These results expand the cellular MTH1 function and suggests MTH1 also is important for removal of methylated nucleotides from the nucleotide pool
    • …
    corecore