160 research outputs found

    CAMBIOS EN ACTIVIDAD DE TREHALASA ESTÁN ASOCIADOS A CAMBIOS EN EL ESTATUS HÍDRICO EN Selaginella Lepidophylla

    Get PDF
    Selaginella lepidophylla es una planta tolerante a la desecación, conocida por su habilidad para sobrevivir largos periodos de sequía, debido a su capacidad para acumular niveles altos de trehalosa. Plantas secas de S. lepidophylla hidratadas durante 24 horas mostraron una rápida cinética de hidratación. Las plantas alcanzaron un 48 % de Contenido Relativo de Agua (CRA) a las 4 horas de hidratación. Plantas totalmente hidratadas mostraron una cinética de deshidratación menos acelerada, presentando un CRA del 50 % a las 8 horas de deshidratación. Las plantas secas mostraron actividad de trehalasa neutra y ácida. La actividad máxima de trehalasa neutra se alcanzó a un CRA de 48 %, mientras que el máximo para trehalasa ácida se encontró en plantas totalmente hidratadas. Las plantas sometidas a deshidratación durante 24 horas mostraron actividad de trehalasa neutra y baja actividad de trehalasa ácida. Se encontró un máximo de actividad de trehalasa neutra a un CRA del 85 % y del 50 % para trehalasa ácida. El patrón de actividad enzimática varió en relación con la concentración de trehalosa. Se demostró que la actividad de trehalasa cambia durante la toma y pérdida de agua y qué estos cambios se reflejan en la concentración de trehalosa en plantas de Selaginella

    The effects of brief heat during early booting on reproductive, developmental and chlorophyll physiological performance in common wheat (Triticum aestivum L.)

    Get PDF
    Rising temperatures due to climate change threaten agricultural crop productivity. As a cool-season crop wheat is heat-sensitive, but often exposed to high temperatures during crop growing period. In the current study, a bread wheat panel of spring wheat genotypes, including putatively heat-tolerant Australian and CIMMYT genotypes, was exposed to a 5-day mild (34oC/28oC, day/night) or extreme (37oC/27oC) heat stress during the sensitive pollen developmental stage. Worsening effects on anther morphology were observed as heat stress increased from mild to extreme. Even under mild heat a significant decrease in pollen viability and number of grains per spike from primary spike was observed compared with the control (21oC/15oC), with Sunstar and two CIMMYT breeding lines performing well. A heat-specific positive correlation between the two traits indicates the important role of pollen fertility for grain setting. Interestingly, both mild and extreme heat induced development of new tillers after the heat stress, providing an alternative sink for accumulated photosynthates and significantly contributing to the final yield. Measurements of flag leaf maximum potential quantum efficiency of Photosystem II (Fv/Fm) showed an initial inhibition after the heat treatment, followed by a full recovery within a few days. Despite this, model fitting using chlorophyll SPAD measurements showed an earlier onset or faster senescence rate under heat stress. The data presented here provide interesting entry points for further research into pollen fertility, tillering dynamics and leaf senescence under heat. The identified heat-tolerant wheat genotypes can be used to dissect the underlying mechanisms and breed climate-resilient wheat

    An efficient triose phosphate synthesis and distribution in wheat provides tolerance to higher field temperature

    Get PDF
    High temperatures in the field hinder bread wheat high yield production, mainly because of the adverse effects of heat over photosynthesis. The Yaqui Valley, the main wheat producer region in Mexico, is a zone prone to have temperatures over 30 °C. The aim of this work was to test the flag leaf photosynthetic performance in ten bread wheat genotypes grown under high temperatures in the field. The study took place during two seasons (2019-2020 and 2020-2021). In each season, control seeds were sown in December, while heat-stressed were sown in late January to subject wheat to heat stress (HS) during the grain filling stage. HS reduced Grain yield from 20 to 58 % in the first season. HS did not reduce chlorophyll content and light-dependent reactions were unaffected in any of the tested genotypes. Rubisco, chloroplast fructose 1,6-biphosphatase (FBPase), and sucrose phosphate synthase (SPS) activities were measured spectrophotometrically. Rubisco activity did not decrease under HS in any of the genotypes. FBPase activity was reduced by HS indicating that triose phosphate flux to starch synthesis was reduced, while SPS was not affected, and thus, sucrose synthesis was maintained. HS reduced aerial biomass in the ten chosen genotypes. Genotypes SOKWB.1, SOKWB.3, and BORLAUG100 maintained their yield under HS, pointing to a potential success in their introduction in this region for breeding heat-tolerant bread wheat

    Pomegranate (Punica granatum L.) Peel Extracts as Antimicrobial and Antioxidant Additives Used in Alfalfa Sprouts

    Get PDF
    Aqueous and ethanolic pomegranate peel extracts (PPE) were studied as a source of phenolic compounds with antimicrobial, anti-quorum sensing, and antioxidant properties. The aqueous extract showed higher total phenolic and flavonoid content (153.43 mg GAE/g and 45.74, respectively) and antioxidant capacity (DPPH radical inhibition: 86.12%, ABTS radical scavenging capacity: 958.21 mg TE/dw) compared to the ethanolic extract. The main phenolic compounds identified by UPLC-DAD were chlorogenic and gallic acids. The aqueous PPE extract showed antimicrobial activity against Listeria monocytogenes, Salmonella Typhimurium, Candida tropicalis (MICs 19–30 mg/mL), and anti-quorum sensing activity expressed as inhibition of Chromobacterium violaceum violacein production (%). The aqueous PPE extracts at 25 mg/mL applied on alfalfa sprouts reduced psychrophilic bacteria (1.12 Log CFU/100 g) and total coliforms (1.23 Log CFU/100 g) and increased the antioxidant capacity of the treated sprouts (55.13 mol TE/100 g (DPPH) and 126.56 mol TE/100 g (ABTS)) compared to untreated alfalfa. This study emphasizes PPE’s antioxidant and antimicrobial activities in alfalfa sprouts preservation

    Mitochondrial angiotensin receptors in dopaminergic neurons. Role in cell protection and aging-related vulnerability to neurodegeneration

    Get PDF
    The renin-angiotensin system (RAS) was initially considered as a circulating humoral system controlling blood pressure, being kidney the key control organ. In addition to the \u27classical\u27 humoral RAS, a second level in RAS, local or tissular RAS, has been identified in a variety of tissues, in which local RAS play a key role in degenerative and aging-related diseases. The local brain RAS plays a major role in brain function and neurodegeneration. It is normally assumed that the effects are mediated by the cell-surface-specific G-protein-coupled angiotensin type 1 and 2 receptors (AT1 and AT2). A combination of in vivo (rats, wild-type mice and knockout mice) and in vitro (primary mesencephalic cultures, dopaminergic neuron cell line cultures) experimental approaches (confocal microscopy, electron microscopy, laser capture microdissection, transfection of fluorescent-tagged receptors, treatments with fluorescent angiotensin, western blot, polymerase chain reaction, HPLC, mitochondrial respirometry and other functional assays) were used in the present study. We report the discovery of AT1 and AT2 receptors in brain mitochondria, particularly mitochondria of dopaminergic neurons. Activation of AT1 receptors in mitochondria regulates superoxide production, via Nox4, and increases respiration. Mitochondrial AT2 receptors are much more abundant and increase after treatment of cells with oxidative stress inducers, and produce, via nitric oxide, a decrease in mitochondrial respiration. Mitochondria from the nigral region of aged rats displayed altered expression of AT1 and AT2 receptors. AT2-mediated regulation of mitochondrial respiration represents an unrecognized primary line of defence against oxidative stress, which may be particularly important in neurons with increased levels of oxidative stress such as dopaminergic neurons. Altered expression of AT1 and AT2 receptors with aging may induce mitochondrial dysfunction, the main risk factor for neurodegeneratio

    Effects of capillary refill time-vs. lactate-targeted fluid resuscitation on regional, microcirculatory and hypoxia-related perfusion parameters in septic shock: a randomized controlled trial

    Get PDF
    Background: Persistent hyperlactatemia has been considered as a signal of tissue hypoperfusion in septic shock patients, but multiple non-hypoperfusion-related pathogenic mechanisms could be involved. Therefore, pursuing lactate normalization may lead to the risk of fuid overload. Peripheral perfusion, assessed by the capillary refll time (CRT), could be an efective alternative resuscitation target as recently demonstrated by the ANDROMEDA-SHOCK trial. We designed the present randomized controlled trial to address the impact of a CRT-targeted (CRT-T) vs. a lactate-targeted (LAC-T) fuid resuscitation strategy on fuid balances within 24 h of septic shock diagnosis. In addi‑ tion, we compared the efects of both strategies on organ dysfunction, regional and microcirculatory fow, and tissue hypoxia surrogates. Results: Forty-two fuid-responsive septic shock patients were randomized into CRT-T or LAC-T groups. Fluids were administered until target achievement during the 6 h intervention period, or until safety criteria were met. CRT-T was aimed at CRT normalization (≤3 s), whereas in LAC-T the goal was lactate normalization (≤2 mmol/L) or a 20% decrease every 2 h. Multimodal perfusion monitoring included sublingual microcirculatory assessment; plasma-disap‑ pearance rate of indocyanine green; muscle oxygen saturation; central venous-arterial pCO2 gradient/ arterial-venous O2 content diference ratio; and lactate/pyruvate ratio. There was no diference between CRT-T vs. LAC-T in 6 h-fuid boluses (875 [375–2625] vs. 1500 [1000–2000], p=0.3), or balances (982[249–2833] vs. 15,800 [740–6587, p=0.2]). CRT-T was associated with a higher achievement of the predefned perfusion target (62 vs. 24, p=0.03). No signifcant diferences in perfusion-related variables or hypoxia surrogates were observed. Conclusions: CRT-targeted fuid resuscitation was not superior to a lactate-targeted one on fuid administration or balances. However, it was associated with comparable efects on regional and microcirculatory fow parameters and hypoxia surrogates, and a faster achievement of the predefned resuscitation target. Our data suggest that stopping fuids in patients with CRT≤3 s appears as safe in terms of tissue perfusion

    First light of VLT/HiRISE: High-resolution spectroscopy of young giant exoplanets

    Get PDF
    A major endeavor of this decade is the direct characterization of young giant exoplanets at high spectral resolution to determine the composition of their atmosphere and infer their formation processes and evolution. Such a goal represents a major challenge owing to their small angular separation and luminosity contrast with respect to their parent stars. Instead of designing and implementing completely new facilities, it has been proposed to leverage the capabilities of existing instruments that offer either high-contrast imaging or high-dispersion spectroscopy by coupling them using optical fibers. In this work, we present the implementation and first on-sky results of the High-Resolution Imaging and Spectroscopy of Exoplanets (HiRISE) instrument at the Very Large Telescope (VLT), which combines the exoplanet imager SPHERE with the recently upgraded high-resolution spectrograph CRIRES using single-mode fibers. The goal of HiRISE is to enable the characterization of known companions in the H band at a spectral resolution on the order of R = λ/∆λ = 100 000 in a few hours of observing time. We present the main design choices and the technical implementation of the system, which is constituted of three major parts: the fiber injection module inside of SPHERE, the fiber bundle around the telescope, and the fiber extraction module at the entrance of CRIRES. We also detail the specific calibrations required for HiRISE and the operations of the instrument for science observations. Finally, we detail the performance of the system in terms of astrometry, temporal stability, optical aberrations, and transmission, for which we report a peak value of ~3.9% based on sky measurements in median observing conditions. Finally, we report on the first astrophysical detection of HiRISE to illustrate its potential

    First light of VLT/HiRISE: High-resolution spectroscopy of young giant exoplanets

    Full text link
    A major endeavor of this decade is the direct characterization of young giant exoplanets at high spectral resolution to determine the composition of their atmosphere and infer their formation processes and evolution. Such a goal represents a major challenge owing to their small angular separation and luminosity contrast with respect to their parent stars. Instead of designing and implementing completely new facilities, it has been proposed to leverage the capabilities of existing instruments that offer either high contrast imaging or high dispersion spectroscopy, by coupling them using optical fibers. In this work we present the implementation and first on-sky results of the HiRISE instrument at the very large telescope (VLT), which combines the exoplanet imager SPHERE with the recently upgraded high resolution spectrograph CRIRES using single-mode fibers. The goal of HiRISE is to enable the characterization of known companions in the HH band, at a spectral resolution of the order of R=λ/Δλ=100000R = \lambda/\Delta\lambda = 100\,000, in a few hours of observing time. We present the main design choices and the technical implementation of the system, which is constituted of three major parts: the fiber injection module inside of SPHERE, the fiber bundle around the telescope, and the fiber extraction module at the entrance of CRIRES. We also detail the specific calibrations required for HiRISE and the operations of the instrument for science observations. Finally, we detail the performance of the system in terms of astrometry, temporal stability, optical aberrations, and transmission, for which we report a peak value of \sim3.9% based on sky measurements in median observing conditions. Finally, we report on the first astrophysical detection of HiRISE to illustrate its potential.Comment: 17 pages, 15 figures, 3 tables. Submitted to A&A on 19 September 202

    Microorganisms and spatial distribution of the sinkholes of the Yucatan Peninsula, underestimated biotechnological potential?

    Get PDF
    Investigación basada en el potencial bio-tecnológico de las micro-especies que habitan los cenotes de la Península de YucatánAbstract Objective: To detect the spatial distribution of the sinkholes of the Peninsula of Yucatan (SPY) and identify those cenotes where microorganisms have been registered. Methods: The geographic coordinates of the SPYs were obtained from various databases, as well as from scientific publications relating to the terminology ‘sinkholes’, ‘karst systems’ and ‘cenotes’. All coordinates were transformed into the Universal Transverse Mercator reference system (UTM) with datum WGS84. An infrared composite image was created with 432 RGB bands from the Landsat 8 satellite. The points with the location of the cenotes were imported into the Software TerrSet. Results: Total 1026 coordinates of sinkholes were recorded in the Yucatan Peninsula. In 18 sinkholes (<2%), microorganisms have been recovered and identified in various taxonomic levels, and only 6 sinkholes (<0.6%) has their biotechnological potential been evaluated. Conclusions: The microorganisms that inhabit the sinkholes of the Yucatan Peninsula are a reservoir with practically unexplored biotechnological potential.CONACY
    corecore