31 research outputs found

    Secondary Chromosomal Attachment Site and Tandem Integration of the Mobilizable Salmonella Genomic Island 1

    Get PDF
    The Salmonella genomic island 1 is an integrative mobilizable element (IME) originally identified in epidemic multidrug-resistant Salmonella enterica serovar Typhimurium (S. Typhimurium) DT104. SGI1 contains a complex integron, which confers various multidrug resistance phenotypes due to its genetic plasticity. Previous studies have shown that SGI1 integrates site-specifically into the S. enterica, Escherichia coli, or Proteus mirabilis chromosome at the 3′ end of thdF gene (attB site)

    Prediction infection risk on the basis of weather-related factors and Erwinia amylovora colonization in apple and pear flowers

    No full text
    Current infection risk prediction models utilize environmental parameters and field records, but do not take into account the estimated inoculum potential within the orchard. The object of this study was to survey the accuracy of three simple prediction methods under Hungarian climatic conditions, which could easily be used by the farmers. We also tested whether the accuracy of infection risk predictions can be improved by taking into consideration the incidence and/or rate of flower colonization by Erwinia amylovora. After preliminary investigations in 1999-2001, data concerning the weather-related infection risk were recorded in 5 apple and 1 pear orchards in 2002, and in 12 apple and I pear orchards in 2003. The weather data were processed by the easy-to-use risk assessment models of the mean temperature prediction line (MTL), Smith's Cougarblight 98C and Billing's integrated system (BIS), and by the MaryblytTM 4.3 computer-assisted model for reference. The population size of E. amylovora in the flower samples was estimated within an order of magnitude by PCR. For all years and orchards tested, Maryblyt indicated 35 days on which there was an acute infection risk. The same days were indicated by all 3 methods in 23 cases (66%), 8 days were indicated by 2 methods (23%) and 4 days were indicated by 1 method only. A similarly good correlation was found for prediction of the date of the first massive infection risk: in 2003, for instance, there was a perfectly consistent prediction by all 4 models in 9 of the 13 participating orchards. A coincidental forecast was provided by 3 of the 4 models in the other 4 orchards. The results indicate that any of the risk assessment models could provide an increased accuracy of the actual infection risk prediction if combined with an estimation of the incidence of Erwinia amylovora colonization in the open flowers. We found no convincing differences in the size of the epiphytic population in flowers of cultivars possessing high or low susceptibility to Erwinia amylovora. We conclude that the easy-to-use methods tested could be used by the fanners to recognize weather-related risks, especially when coupled with an estimation of the proportion of the pathogen-infested flowers. This local prediction would provide rapid information (faster than the regional forecast systems) specifically for a given orchard

    High-fat diet-induced obesity leads to increased NO sensitivity of rat coronary arterioles: role of soluble guanylate cyclase activation.

    No full text
    The impact of obesity on nitric oxide (NO)-mediated coronary microvascular responses is poorly understood. Thus NO-mediated vasomotor responses were investigated in pressurized coronary arterioles ( approximately 100 microm) isolated from lean (on normal diet) and obese (fed with 60% of saturated fat) rats. We found that dilations to acetylcholine (ACh) were not significantly different in obese and lean rats (lean, 83 +/- 4%; and obese, 85 +/- 3% at 1 microM), yet the inhibition of NO synthesis with N(omega)-nitro-l-arginine methyl ester reduced ACh-induced dilations only in vessels of lean controls. The presence of the soluble guanylate cyclase (sGC) inhibitor oxadiazolo-quinoxaline (ODQ) elicited a similar reduction in ACh-induced dilations in the two groups of vessels (lean, 60 +/- 11%; and obese, 57 +/- 3%). Dilations to NO donors, sodium nitroprusside (SNP), and diethylenetriamine (DETA)-NONOate were enhanced in coronary arterioles of obese compared with lean control rats (lean, 63 +/- 6% and 51 +/- 5%; and obese, 78 +/- 5% and 70 +/- 5%, respectively, at 1 microM), whereas dilations to 8-bromo-cGMP were not different in the two groups. In the presence of ODQ, both SNP and DETA-NONOate-induced dilations were reduced to a similar level in lean and obese rats. Moreover, SNP-stimulated cGMP immunoreactivity in coronary arterioles and also cGMP levels in carotid arteries were enhanced in obese rats, whereas the protein expression of endothelial NOS and the sGC beta1-subunit were not different in the two groups. Collectively, these findings suggest that in coronary arterioles of obese rats, the increased activity of sGC leads to an enhanced sensitivity to NO, which may contribute to the maintenance of NO-mediated dilations and coronary perfusion in obesity

    Adsorption of Aromatic Hydrocarbon Molecules at the Surface of Ice, As Seen by Grand Canonical Monte Carlo Simulation

    No full text
    The adsorption of four aromatic hydrocarbon compounds, benzene, naphthalene, anthracene, and phenanthrene, at the surface of I-h ice is investigated by grand canonical Monte Carlo (GCMC) computer simulation under tropospheric conditions at 200 K. By systematic variation of the value of adsorbate chemical potential in the simulations, the adsorption isotherms are determined, It is found that adsorption follows the Langmuir mechanism only up to a rather low relative pressure value in every case. In this range specific surface sites, called alpha sites, to which adsorbate molecules can be bound particularly strongly in specific orientation, are occupied. In these alpha sites, presumably the dangling OH bonds of the ice surface form O-H-center dot center dot center dot center dot pi-type hydrogen bonds with the delocalized pi electrons of the adsorbed aromatic molecule lying parallel with the ice surface. Once these alpha sites are saturated, lateral interactions become increasingly important, leading to large fluctuations of the lateral density of the adsorption layer and an increasing deviation of the adsorption isotherm from the Langmuir shape. The adsorption layer is found to be strictly monomolecular and even unsaturated in every case, as condensation well precedes the saturation of this monolayer for all four aromatic adsorbates considered in this study

    Identification of multiple integration sites for Stx-phage 24B in the Escherichia coli genome, description of a novel integrase and evidence for a functional anti-repressor

    No full text
    The key virulence factor in Shiga-toxigenic Escherichia coli is the expression of Shiga toxin (Stx), which is conferred by Stx-encoding temperate lambdoid phages (Stx-phages). It had been assumed that Stx-phages would behave similarly to λ phage. However, contrary to the λ superinfection immunity model, it has been demonstrated that double lysogens can be produced with the Stx-phage Φ24B. Here, the Φ24B integrase gene is identified, and the preferred site of integration defined. Although an E. coli int gene was identified close to the Φ24B integration site, it was shown not to be involved in the phage integration event. An additional six potential integration sites were identified in the E. coli genome, and three of these were confirmed experimentally. Two of the other potential sites lie within genes predicted to be essential to E. coli and are therefore unlikely to support phage integration. A Φ24B gene, possessing similarity to the well-characterized P22 ant gene, was identified. RT-PCR was used to demonstrate that ant is transcribed in a Φ24B E. coli lysogen, and expression of an anti-repressor is the likely explanation for the absence of immunity to superinfection. Demonstration of the ability of Φ24B to form multiple lysogens has two potentially serious impacts. First, multiple integrated prophages will drive the evolution of bacterial pathogens as novel Stx-phages emerge following intracellular mutation/recombination events. Second, multiple copies of the stx gene may lead to an increase in toxin production and consequently increased virulence
    corecore