138 research outputs found

    A graph theory-based multi-scale analysis of hierarchical cascade in molecular clouds : Application to the NGC 2264 region

    Full text link
    The spatial properties of small star-clusters suggest that they may originate from a fragmentation cascade of the cloud for which there might be traces up to a few dozen of kAU. Our goal is to investigate the multi-scale spatial structure of gas clumps, to probe the existence of a hierarchical cascade and to evaluate its possible link with star production in terms of multiplicity. From the Herschel emission maps of NGC 2264, clumps are extracted using getsf software at each of their associated spatial resolution, respectively [8.4, 13.5, 18.2, 24.9, 36.3]". Using the spatial distribution of these clumps and the class 0/I Young Stellar Object (YSO) from Spitzer data, we develop a graph-theoretic analysis to represent the multi-scale structure of the cloud as a connected network. From this network, we derive three classes of multi-scale structure in NGC 2264 depending on the number of nodes produced at the deepest level: hierarchical, linear and isolated. The structure class is strongly correlated with the column density NH2N_{\rm H_2} since the hierarchical ones dominate the regions whose NH2>6×1022_{\rm H_2} > 6 \times 10^{22}cm−2^{-2}. Although the latter are in minority, they contain half of the class 0/I YSOs proving that they are highly efficient in producing stars. We define a novel statistical metric, the fractality coefficient F that measure the fractal index describing the scale-free process of the cascade. For NGC 2264, we estimate F = 1.45±\pm0.12. However, a single fractal index fails to fully describe a scale-free process since the hierarchical cascade starts at a 13 kAU characteristic spatial scale. Our novel methodology allows us to correlate YSOs with their multi-scale gaseous environment. This hierarchical cascade that drives efficient star formation is suspected to be both hierarchical and rooted by the larger-scale gas environment up to 13 kAU

    Superiority of magnesium and vitamin B6 over magnesium alone on severe stress in healthy adults with low magnesemia: A randomized, single-blind clinical trial

    Get PDF
    Introduction: Animal and clinical studies suggest complementary effects of magnesium and high-dose pyridoxine (vitamin B6) on stress reduction. This is the first randomized trial evaluating the effects of combined magnesium and vitamin B6 supplementation on stress in a stressed population with low magnesemia using a validated measure of perceived stress. Methods: In this Phase IV, investigator-blinded trial (EudraCT: 2015-003749-24), healthy adults with Depression Anxiety Stress Scales (DASS-42) stress subscale score >18 and serum magnesium concentration 0.45 mmol/L–0.85 mmol/L, were randomized 1:1 to magnesium–vitamin B6 combination (Magne B6 [Mg–vitamin B6]; daily dose 300 mg and 30 mg, respectively) or magnesium alone (Magnespasmyl [Mg]; daily dose 300 mg). Outcomes included change in DASS-42 stress subscale score from baseline to Week 8 (primary endpoint) and Week 4, and incidence of adverse events (AEs). Results: In the modified intention-to-treat analysis (N = 264 subjects), both treatment arms substantially reduced DASS-42 stress subscale score from baseline to Week 8 (Mg–vitamin B6, 44.9%; Mg 42.4%); no statistical difference between arms was observed (p>0.05). An interaction (p = 0.0097) between baseline stress level and treatment warranted subgroup analysis (as per statistical plan); adults with severe/extremely severe stress (DASS-42 stress subscale score ≄25; N = 162) had a 24% greater improvement with Mg–vitamin B6 versus Mg at Week 8 (3.16 points, 95% CI 0.50 to 5.82, p = 0.0203). Consistent results were observed in the per protocol analysis and at Week 4. Overall, 12.1% of Mg–vitamin B6 treated and 17.4% of Mg-treated subjects experienced AEs potentially treatment related. Conclusions: These findings suggest oral Mg supplementation alleviated stress in healthy adults with low magnesemia and the addition of vitamin B6 to Mg was not superior to Mg supplementation alone. With regard to subjects with severe/extremely severe stress, this study provides clinical support for greater benefit of Mg combined with vitamin B6

    The Tnt1 Retrotransposon Escapes Silencing in Tobacco, Its Natural Host

    Get PDF
    Retrotransposons' high capacity for mutagenesis is a threat that genomes need to control tightly. Transcriptional gene silencing is a general and highly effective control of retrotransposon expression. Yet, some retrotransposons manage to transpose and proliferate in plant genomes, suggesting that, as shown for plant viruses, retrotransposons can escape silencing. However no evidence of retrotransposon silencing escape has been reported. Here we analyze the silencing control of the tobacco Tnt1 retrotransposon and report that even though constructs driven by the Tnt1 promoter become silenced when stably integrated in tobacco, the endogenous Tnt1 elements remain active. Silencing of Tnt1-containing transgenes correlates with high DNA methylation and the inability to incorporate H2A.Z into their promoters, whereas the endogenous Tnt1 elements remain partially methylated at asymmetrical positions and incorporate H2A.Z upon induction. Our results show that the promoter of Tnt1 is a target of silencing in tobacco, but also that endogenous Tnt1 elements can escape this control and be expressed in their natural host

    Transcriptional activity of transposable elements in maize

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mobile genetic elements represent a high proportion of the Eukaryote genomes. In maize, 85% of genome is composed by transposable elements of several families. First step in transposable element life cycle is the synthesis of an RNA, but few is known about the regulation of transcription for most of the maize transposable element families. Maize is the plant from which more ESTs have been sequenced (more than two million) and the third species in total only after human and mice. This allowed us to analyze the transcriptional activity of the maize transposable elements based on EST databases.</p> <p>Results</p> <p>We have investigated the transcriptional activity of 56 families of transposable elements in different maize organs based on the systematic search of more than two million expressed sequence tags. At least 1.5% maize ESTs show sequence similarity with transposable elements. According to these data, the patterns of expression of each transposable element family is variable, even within the same class of elements. In general, transcriptional activity of the <it>gypsy</it>-like retrotransposons is higher compared to other classes. Transcriptional activity of several transposable elements is specially high in shoot apical meristem and sperm cells. Sequence comparisons between genomic and transcribed sequences suggest that only a few copies are transcriptionally active.</p> <p>Conclusions</p> <p>The use of powerful high-throughput sequencing methodologies allowed us to elucidate the extent and character of repetitive element transcription in maize cells. The finding that some families of transposable elements have a considerable transcriptional activity in some tissues suggests that, either transposition is more frequent than previously expected, or cells can control transposition at a post-transcriptional level.</p

    Applications of lignin in the agri-food industry

    Get PDF
    Of late, valorization of agri-food industrial by-products and their sustainable utilization is gaining much contemplation world-over. Globally, 'Zero Waste Concept' is promoted with main emphasis laid towards generation of minimal wastes and maximal utilization of plantbased agri-food raw materials. One of the wastes/by-products in the agri-food industry are the lignin, which occurs as lignocellulosic biomass. This biomass is deliberated to be an environmental pollutant as they offer resistance to natural biodegradation. Safe disposal of this biomass is often considered a major challenge, especially in low-income countries. Hence, the application of modern technologies to effectively reduce these types of wastes and maximize their potential use/applications is vital in the present day scenario. Nevertheless, in some of the high-income countries, attempts have been made to efficiently utilize lignin as a source of fuel, as a raw material in the paper industry, as a filler material in biopolymer based packaging and for producing bioethanol. However, as of today, agri-food industrial applications remains significantly underexplored. Chemically, lignin is heterogeneous, bio-polymeric, polyphenolic compound, which is present naturally in plants, providing mechanical strength and rigidity. Reports are available wherein purified lignin is established to possess therapeutic values; and are rich in antioxidant, anti-microbial, anti-carcinogenic, antidiabetic properties, etc. This chapter is divided into four sub-categories focusing on various technological aspects related to isolation and characterization of lignin; established uses of lignin; proved bioactivities and therapeutic potentials of lignin, and finally on identifying the existing research gaps followed by future recommendations for potential use from agri-food industrial wastes.Theme of this chapter is based on our ongoing project- Valortech, which has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No 810630

    Low incidence of SARS-CoV-2, risk factors of mortality and the course of illness in the French national cohort of dialysis patients

    Get PDF
    • 

    corecore