256 research outputs found

    Lifetime determination of excited states in Cd-106

    Get PDF
    Two separate experiments using the Differential Decay Curve Method have been performed to extract mean lifetimes of excited states in 106 Cd. The inedium-spin states of interest were populated by the Mo-98(C-12, 4n) Cd-106 reaction performed at the Wright Nuclear Structure Lab., Yale University. From this experiment, two isomeric state mean lifetimes have been deduced. The low-lying states were populated by the Mo-96(C-13, 3n)Cd-106 reaction performed at the Institut fur Kernphysik, Universitat zu Koln. The mean lifetime of the I-pi = 2(1)(+) state was deduced, tentatively, as 16.4(9) ps. This value differs from the previously accepted literature value from Coulomb excitation of 10.43(9) ps

    Revisiting anomalous \u3cem\u3eB\u3c/em\u3e(\u3cem\u3eE\u3c/em\u3e2;4\u3csup\u3e+\u3c/sup\u3e\u3csub\u3e1\u3c/sub\u3e→2\u3csup\u3e+\u3c/sup\u3e\u3csub\u3e1\u3c/sub\u3e)/\u3cem\u3eB\u3c/em\u3e(\u3cem\u3eE\u3c/em\u3e2;2\u3csup\u3e+\u3c/sup\u3e\u3csub\u3e1\u3c/sub\u3e→0\u3csup\u3e+\u3c/sup\u3e\u3csub\u3e1\u3c/sub\u3e) values in \u3csup\u3e98\u3c/sup\u3eRu and \u3csup\u3e180\u3c/sup\u3ePt

    Get PDF
    Recently, a set of nine nonmagic nuclei with anomalous values of the B(E2) ratio B4/2 ≡ B(E2; 4+1 → 2+1)/B(E2; 2+1 → 0+1) were identified. Such values are outside the range allowed by current collective models. In the present work, the B(E2; 4+1 → 2+1) values for two of these nuclei, 98Ru and 180Pt, were re-measured to determine if the current literature values for these nuclei are correct. 98Ru was studied in a 27Al(98Ru,98Ru∗) Coulomb excitation experiment in inverse kinematics, while the lifetime of the 4+1 state in 180Pt was measured in a 122Sn(62Ni, 4n)180Pt recoil distance method (RDM) experiment. For both nuclei, the remeasured B4/2 values are well above 1, removing the deviations from collective models

    Very high rotational frequencies and band termination in 73Br

    Get PDF
    Rotational bands in 73Br have been investigated up to spins of 65/2 using the EUROBALL III spectrometer. One of the negative-parity bands displays the highest rotational frequency 1.85 MeV reported to date in nuclei with mass number greater than 25. At high frequencies, the experimental dynamic moment of inertia for all bands decrease to very low values, indicating a loss of collectivity. The bands are described in the configuration-dependent cranked Nilsson-Strutinsky model. The calculations indicate that one of the negative-parity bands is observed up to its terminating single-particle state at spin 63/2. This result establishes the first band termination case in the A = 70 mass region.Comment: 6 pages, 6 figures, submitted to Phys. Rev. C as a Rapid Communicatio

    Comparison of Isoscalar Vector Meson Production Cross Sections in Proton-Proton Collisions

    Get PDF
    The reaction ppppω pp\to pp\bf \omega was investigated with the TOF spectrometer, which is an external experiment at the accelerator COSY (Forschungszentrum J\"ulich, Germany). Total as well as differential cross sections were determined at an excess energy of 93MeV93 MeV (pbeam=2950MeV/cp_{beam}=2950 MeV/c). Using the total cross section of (9.0±0.7±1.1)μb(9.0\pm 0.7 \pm1.1) \mu b for the reaction ppppω pp\to pp\omega determined here and existing data for the reaction ppppϕpp\to pp\bf \phi, the ratio Rϕ/ω=σϕ/σω\mathcal{R}_{\phi/\omega}=\sigma_\phi/\sigma_\omega turns out to be significantly larger than expected by the Okubo-Zweig-Iizuka (OZI) rule. The uncertainty of this ratio is considerably smaller than in previous determinations. The differential distributions show that the ω\omega production is still dominated by S-wave production at this excess energy, however higher partial waves clearly contribute. A comparison of the measured angular distributions for ω\omega production to published distributions for ϕ\phi production at 83MeV83 MeV shows that the data are consistent with an identical production mechanism for both vector mesons

    Production of ω\omega mesons in proton-proton collisions

    Get PDF
    The cross section for the production of ω\omega mesons in proton-proton collisions has been measured in a previously unexplored region of incident energies. Cross sections were extracted at 92 MeV and 173 MeV excess energy, respectively. The angular distribution of the ω\omega at ϵ\epsilon=173 MeV is strongly anisotropic, demonstrating the importance of partial waves beyond pure s-wave production at this energy.Comment: 12 pages, 4 figures submitted to Physics Letters B v2: figure 1 added, discussion detailing the data analysis, figure 3 (fig. 2 in v1) modified in line styles and systematic errors displayed on dat

    Isomeric Decay of \u3csup\u3e208\u3c/sup\u3eRa

    Get PDF
    Low-energy excited states of 208Ra were investigated using the 182W(30Si, 4n) reaction at the Wright Nuclear Structure Laboratory of Yale University. Fusion evaporation recoils were selected using the gas-filled spectrometer SASSYER. Delayed γ rays, following isomeric decays, were detected at the focal plane of SASSYER with a small array of three clover Ge detectors. Transitions following a proposed J π = 8+ isomer were observed, and the half-life was measured

    Identification of baryon resonances in central heavy-ion collisions at energies between 1 and 2 AGeV

    Get PDF
    The mass distributions of baryon resonances populated in near-central collisions of Au on Au and Ni on Ni are deduced by defolding the ptp_t spectra of charged pions by a method which does not depend on a specific resonance shape. In addition the mass distributions of resonances are obtained from the invariant masses of (p,π±)(p, \pi^{\pm}) pairs. With both methods the deduced mass distributions are shifted by an average value of -60 MeV/c2^2 relative to the mass distribution of the free Δ(1232)\Delta(1232) resonance, the distributions descent almost exponentially towards mass values of 2000 MeV/c^2. The observed differences between (p,π)(p, \pi^-) and (p,π+)(p, \pi^+) pairs indicate a contribution of isospin I=1/2I = 1/2 resonances. The attempt to consistently describe the deduced mass distributions and the reconstructed kinetic energy spectra of the resonances leads to new insights about the freeze out conditions, i.e. to rather low temperatures and large expansion velocities.Comment: 30 pages, 13 figures, Latex using documentstyle[12pt,a4,epsfig], to appear in Eur. Phys. J.

    Systematic study of the pp -> pp omega reaction

    Full text link
    A systematic study of the production of omega-mesons in proton-proton-collisions was carried out in a kinematically complete experiment at three excess energies(epsilon= 92, 128, 173MeV). Both protons were detected using the large-acceptance COSY-TOF spectrometer at an external beam line at the Cooler Synchrotron COSY at Forschungszentrum J\"ulich. The total cross section, angular distributions of both omega-mesons and protons were measured and presented in various reference frames such as the overall CMS, helicity and Jackson frame. In addition, the orientation of the omega-spin and invariant mass spectra were determined. We observe omega-production to take place dominantly in Ss and Sp final states at epsilon = 92, 128 MeV and, additionally, in Sd at epsilon= 173 MeV. No obvious indication of resonant omega-production via N^*-resonances was found, as proton angular distributions are almost isotropic and invariant mass spectra are compatible with phase space distributions. A dominant role of ^3P_1 and ^1S_0 initial partial waves for omega-production was concluded from the orientation of the decay plane of the omega-meson. Although the Jackson angle distributions in the omega-p-Jackson frame are anisotropic we argue that this is not an indication of a resonance but rather a kinematical effect reflecting the anisotropy of the omega angular distribution. The helicity angle distribution in the omega-p-helicity frame shows an anisotropy which probably reflects effects of the omega angular momenta in the final state; this observable may be, in addition to the orientation of the omega decay plane, the most sensitive one to judge the validity of theoretical descriptions of the production process.Comment: 17 pages, 16 figures, accepted for publication in EPJ

    Deducing the \u3csup\u3e237\u3c/sup\u3eU(\u3cem\u3en,f\u3c/em\u3e) Cross Section Using the Surrogate Ratio Method

    Get PDF
    We have deduced the cross section for 237U(n, f) over an equivalent neutron energy range from 0 to 20 MeV using the surrogate ratio method. A 55 MeV4He beam from the 88 inch cyclotron at Lawrence Berkeley National Laboratory was used to induce fission in the following reactions: 238U(α, αf) and 236U(α, αf). The 238U reaction was a surrogate for 237U(n, f), and the 236U reaction was used as a surrogate for 235U(n, f). Scattered α particles were detected in a fully depleted segmented silicon telescope array over an angle range of 35° to 60° with respect to the beam axis. The fission fragments were detected in a third independent silicon detector located at backward angles between 106° and 131°
    corecore