48 research outputs found
Characterization of a Human Powered Nebulizer Compressor for Resource Poor Settings
Background
Respiratory disease accounts for three of the ten leading causes of death worldwide. Many of these diseases can be treated and diagnosed using a nebulizer. Nebulizers can also be used to safely and efficiently deliver vaccines. Unfortunately, commercially available nebulizers are not designed for use in regions of the world where lung disease is most prevalent: they are electricity-dependent, cost-prohibitive, and not built to be reliable in harsh operating conditions or under frequent use.
To overcome these limitations, the Human Powered Nebulizer compressor (HPN) was developed. The HPN does not require electricity; instead airflow is generated manually through a hand-crank or bicycle-style pedal system. A health care worker or other trained individual operates the device while the patient receives treatment.
This study demonstrates functional specifications of the HPN in comparison with a standard commercially available electric jet nebulizer compressor, the DeVilbiss Pulmo-Aide 5650D (Pulmo-Aide). Methods
Pressure and flow characteristics were measured with a rotameter and pressure transducer, respectively. Volume nebulized by each compressor was determined by mass, and particle size distribution was determined via laser diffraction. The Hudson RCI Micro Mist nebulizer mouthpiece was used with both compressors. Results
The pressure and flow generated by the HPN and Pulmo-Aide were: 15.17 psi and 10.5 L/min; and 14.65 psi and 11.2 L/min, respectively. The volume of liquid delivered by each was equivalent, 1.097 ± 0.107 mL (mean ± s.e.m., n = 13) for the HPN and 1.092 ± 0.116 mL for the Pulmo-Aide. The average particle size was also equivalent, 5.38 ± 0.040 micrometers (mean ± s.e.m., n = 7) and 5.40 ± 0.025 micrometers, respectively. Conclusions
Based on these characteristics, the HPN’s performance is equivalent to a popular commercially available electric nebulizer compressor. The findings presented in this paper, combined with the results of two published clinical studies, suggest that the HPN could serve as an important diagnostic and therapeutic tool in the fight against global respiratory health challenges including: tuberculosis, chronic obstructive pulmonary disease, asthma, and lower respiratory infections
Miscibility and Viscoelastic Properties of Acrylic Polyhedral Oligomeric Silsesquioxane-Poly(methyl methacrylate) Blends
Submitted to POLYMER, January 2005We investigate the miscibility of acrylic polyhedral oligomeric silsesquioxanes (POSS)
[characteristic size d ≈ 2 nm] and poly(methyl methacrylate)(PMMA) in order to determine the
effect of well-dispersed POSS nanoparticles on the thermomechanical properties of PMMA. Two
different acrylic POSS species (unmodified and hydrogenated) were blended separately with
PMMA at volume fractions up to φ = 0.30. Both POSS species have a plasticizing effect on
PMMA by lowering the glass transition temperature Tg and decreasing the melt-state linear viscoelastic moduli measured in small amplitude oscillatory shear flow. The unmodified acrylic-POSS has better miscibility with PMMA than the hydrogenated form, approaching complete
miscibility for loadings φ Tg of PMMA, far less than the 17.4°C decrease in the glass transition temperature observed in a blend of 5 vol% dioctyl phthalate (DOP) in PMMA; however, the decrease in the glass transition temperature per added plasticizer molecule is nearly the same in the unmodified acrylic-POSS-PMMA blend compared with the DOP-PMMA blend. Time-temperature superposition (TTS) was applied successfully to the storage and loss moduli data and the resulting shift factors were correlated with a significant increase in free volume of the blends. The fractional free volume f0 = 0.046 for PMMA at T0 = 170°C while for a blend of 5 vol% unmodified acrylic-POSS in PMMA f0 = 0.057, which corresponds to an addition of 0.47 nm3 per added POSS molecule at φ = 0.05. The degree of dispersion was characterized using both wide-angle x-ray diffraction (WAXD) and dynamic mechanical analysis (DMA). Diffraction patterns for both blend systems show clear evidence of phase separation at φ = 0.20 and higher, but no significant phase separation is evident at φ = 0.10 and lower. The storage modulus measured in DMA indicates appreciable phase separation for unmodified acrylic POSS loadings φ = 0.10, while no evidence of phase separation is present in the φ = 0.05 blend in DMA.AFOSR (DURINT program
Thermorheological Properties Near the Glass Transition of Oligomeric Poly(methyl methacrylate) Blended with Acrylic Polyhedral Oligomeric Silsesquioxane Nanocages
Submitted to Rheologica ActaTwo distinct oligomeric species of similar mass and chemical functionality
(Mw ≈ 2,000 g/mol), one a linear methyl methacrylate oligomer (radius of gyration Rg ≈ 1.1 nm) and the other a hybrid organic-inorganic polyhedral silsesquioxane nanocage (methacryl-POSS, r ≈ 1.0 nm), were subjected to thermal and rheological tests to
compare the behaviors of these geometrically dissimilar molecules over the entire
composition range. The glass transition temperatures of the blends varied monotonically between the glass transition temperatures of the pure oligomer (Tg = â47.3°C) and the pure POSS (Tg = â61.0°C). Blends containing high POSS contents (with volume fraction φ_POSS ⥠0.90) exhibited enhanced enthalpy relaxation in DSC measurements, and the degree of enthalpy relaxation was used to calculate the kinetic fragility indices m of the oligomeric MMA (m = 59) and the POSS (m = 74). The temperature dependences of the viscosities were fitted by the free volume-based WLF-VFT framework and a dynamic scaling relation. The calculated values of the fragility from the WLF-VFT fits were similar for the POSS (m = 82) and for the oligomer (m = 76), and the dynamic scaling exponent was similar for the oligomeric MMA and the POSS. Within the range of known fragilities for glass-forming liquids, the temperature dependence of the viscosity was found to be similarly fragile for the two species. The difference in shape of the nanocages and oligomer chains is unimportant in controlling the glass-forming properties of the blends at low volume fractions ( φPOSS < 0.20); however, at higher volume fractions, adjacent POSS cages begin to crowd each other, leading to an increase in the fractional free volume at the glass transition temperature and the observed enhanced enthalpy relaxation in DSC.AFOSR (DURINT Program
Effects of insulin-like growth factor-1 and dexamethasone on cytokine-challenged cartilage: relevance to post-traumatic osteoarthritis
SummaryObjectiveInterleukin-1 is one of the inflammatory cytokines elevated after traumatic joint injury that plays a critical role in mediating cartilage tissue degradation, suppressing matrix biosynthesis, and inducing chondrocyte apoptosis, events associated with progression to post-traumatic osteoarthritis (PTOA). We studied the combined use of insulin-like growth factor-1 (IGF-1) and dexamethasone (Dex) to block these multiple degradative effects of cytokine challenge to articular cartilage.MethodsYoung bovine and adult human articular cartilage explants were treated with IL-1α in the presence or absence of IGF-1, Dex, or their combination. Loss of sulfated glycosaminoglycans (sGAG) and collagen were evaluated by the DMMB and hydroxyproline assays, respectively. Matrix biosynthesis was measured via radiolabel incorporation, chondrocyte gene expression by qRT-PCR, and cell viability by fluorescence staining.ResultsIn young bovine cartilage, the combination of IGF-1 and Dex significantly inhibited the loss of sGAG and collagen, rescued the suppression of matrix biosynthesis, and inhibited the loss of chondrocyte viability caused by IL-1α treatment. In adult human cartilage, only IGF-1 rescued matrix biosynthesis and only Dex inhibited sGAG loss and improved cell viability. Thus, the combination of IGF-1 + Dex together showed combined beneficial effects in human cartilage.ConclusionsOur findings suggest that the combination of IGF-1 and Dex has greater beneficial effects than either molecule alone in preventing cytokine-mediated cartilage degradation in adult human and young bovine cartilage. Our results support the use of such a combined approach as a potential treatment relevant to early cartilage degradative changes associated with joint injury