
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Flame retarded poly(lactic acid) using POSS-modified cellulose.
2. Effects of intumescing flame retardant formulations on
polymer degradation and composite physical properties
Citation for published version:
Fox, DM, Novy, M, Brown, K, Zammarano, M, Harris, RH, Murariu, M, McCarthy, ED, Seppala, JE &
Gilman, JW 2014, 'Flame retarded poly(lactic acid) using POSS-modified cellulose. 2. Effects of
intumescing flame retardant formulations on polymer degradation and composite physical properties',
Polymer Degradation and Stability, vol. 106, pp. 54-62.
https://doi.org/10.1016/j.polymdegradstab.2014.01.007

Digital Object Identifier (DOI):
10.1016/j.polymdegradstab.2014.01.007

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Early version, also known as pre-print

Published In:
Polymer Degradation and Stability

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 23. Jul. 2021

https://doi.org/10.1016/j.polymdegradstab.2014.01.007
https://doi.org/10.1016/j.polymdegradstab.2014.01.007
https://www.research.ed.ac.uk/en/publications/43a1fdd8-d7ea-485b-87cb-f99c4773da69


Flame Retarded Poly(lactic acid) Using POSS-Modified 

Cellulose. 2. Effects of Intumescing Flame Retardant 

Formulations on Polymer Degradation and Composite 

Physical Properties 

Douglas M. Fox1,2,*, Melissa Novy1, Karlena Brown1, Mauro Zammarano1,2, Richard H. Harris, 

Jr.2, Marius Murariu3, Edward McCarthy4, and Jeffrey W. Gilman4  

1 Department of Chemistry, American University, Washington DC, 20016 

2 Fire Research Division, Engineering Laboratory, National Institute of Standards and 

Technology, Gaithersburg, MD 20899 

3 Center of Innovation and Research in Materials and Polymers (CIRMAP), Laboratory of 

Polymeric and Composite Materials (LPCM), University of Mons and Materia Nova Research 

Center, Place du Parc 20, 7000 Mons, Belgium 

4 Polymers Division, Material Measurement Laboratory, National Institute of Standards and 

Technology, Gaithersburg, MD 20899 

TEL: (202) 885-1735 

FAX: (202) 885-1752 

EMAIL: dfox@american.edu 

 

Abstract 

Poly(lactic acid), PLA, was extruded with intumescing flame retardant formulations based on 

ammonium polyphosphate, APP. Nanofibrillated cellulose fibers (NFC), POSS-modified NFC 

(PNFC), and pentaerythritol (APP) were used as the additional carbon source. The effects that 

each additive and their intumescing combinations had on polymer degradation, flammability, 

crystallization, melt rheology, and tensile properties were systematically examined. APP and 

PER catalyzed the degradation of PLA during extrusion, which increased the crystallinity of 

PLA, lowered the viscosity of the melt, reduced the moduli, and decreased the tensile strength of 

the composite. The POSS moieties on PNFC acted as plasticizers in melt rheology studies, but 

did not affect the glass transition temperature. PNFC formed a cross-linked network with APP 

when melt-blended with PLA, which reduced polymer degradation, decreased PLA crystallinity, 

changed the rheological behavior, and improved composite stiffness. These composites exhibited 

mailto:dfox@american.edu


the highest viscosities and storage moduli at low frequencies. Higher shear disrupted the 

network, and the plasticizing effect of PNFC dominated at high frequencies. The PLA 

composites containing APP and PNFC had the best tensile properties of all the intumescing 

composites studied. The cross-linked network formed between cellulose, POSS, and PLA helps 

produce composites with superior flammability, rheological, and mechanical properties relative 

to other intumescing formulations. 

Cellulose, PLA, polyoligomeric silsesquioxane, XRD, DSC, crystallinity, rheology, tensile 

strength 

 

1. Introduction 

Recently, increasing concern about the environment and public health has encouraged the use of 

materials derived from renewable sources. Because of the versatility and prevalence of polymers 

in many industries, a considerable amount of research has been conducted on biodegradable 

polymer substitutes for common petroleum-based polymers.[1, 2] For instance, poly(lactic acid) 

(PLA), a nontoxic and biodegradable polymer derived from corn and other plants,[3-5] has 

applications in food packaging,[4] disposable utensils,[6] and medical devices[4, 7] because of 

its mechanical strength and relatively high melting point.[8, 9] Chemicals have also been added 

to PLA to counteract its brittleness,[7, 10] limited barrier properties,[11-13] and flammability.[3, 

14-17] PLA composites can be used in textiles,[14, 18] casings for electronic devices,[18, 19] 

and automotive parts,[20] but are subject to strict flammability requirements. 

 

Intumescent flame retardants (IFRs) are one of the most promising additives for reducing the 

flammability of PLA. Although inorganic compounds[21-23] and nanoparticles[23-27] are also 

used as flame retardant additives, IFRs are halogen-free and produce less smoke.[9, 28] The 

Bourbigot group has reviewed many flame retardant studies for PLA and reported that the 

majority work through the condensed phase mechanism.[18] IFRs consist of an acid source, a 

carbon or char-forming source, and a blowing agent; together they produce a foamed char barrier 

that reduces heat and fuel transport.[9, 29] A commonly used IFR is a combination of 

ammonium polyphosphate (APP) and pentaerythritol (PER). It has been shown to reduce 



flammability with little smoke production,[28, 30, 31] However, IFRs, especially those based on 

polyphosphates, are prone to poor weatherability,[32-36] reduced viscoelasticity,[28, 37-39] and 

reduced mechanical strength.[40-44]  

 

Recently, investigations into carbohydrate-based replacements for the petroleum-based carbon 

source, PER, have been carried out in PLA.[6, 16, 39, 45-48] Not only are these materials 

biodegradable and sustainable, but also many of them are water insoluble and improve 

mechanical properties, such as stiffness and mechanical strength. Sugars, starch, and lignin have 

been used to improve the charring and flammability characteristics of intumescing PLA.[6, 16, 

45, 47] However, it has been shown that lignin, starch, and starch thermoplastics increase the 

water sensitivity and degradation rates while lowering the tensile and impact strengths of PLA 

and intumescing PLA composites.[49-52] The incorporation of ramie fibers and APP into PLA 

produced composites with higher storage modulus, but decreased mechanical strength at higher 

loadings of APP.[39] Pack, et al. found that increased compatibility between starch coated with 

resorcinol di(phenyl phosphate) and a blend of Ecoflex and PLA resulted in significantly higher 

toughness of the composite, while also achieving a designation of V-0 in UL-94 flammability 

tests.[53] In most of these studies, it was found that the presence of APP increased acid 

hydrolysis of the polymer and additives. This could be minimized by microencapsulating the 

APP with polyurethane.[45, 54] Despite the improved flame retardancy of these composites, the 

problem of reduced mechanical properties remains. 

 

An IFR additive that may be effective at reducing all of the IFR disadvantages is polyhedral 

oligomeric silsesquioxane (POSS). It has been shown to reinforce composites while also 

reducing flammability by forming stable char with a structure that is similar to ceramic.[24, 55-

57] This can help form more durable chars, resulting in synergistic effects when used in 

conjunction with an intumescing flame retardant.[58, 59] One of the advantages of POSS is that 

organic substituents can be added to the exterior of its cage-like core of Si – O (SiO1.5).[60, 61] 

Because the substituents are customizable, POSS additives can achieve greater compatibility 

with the polymer matrix and yield composites with superior mechanical properties.[62-64] Pan 

and Qiu[64] found that OctaIsobutyl-POSS dispersed well in poly(ʟ-lactide)and that the storage 

modulus of the nanocomposite significantly increased from that of neat polymer. They also 



reported that the crystallization time at 128 °C of the nanocomposite was shortened to 21 min. 

And, most recently, POSS has been used to improve the flammability of intumescing poly(lactic 

acid) composites while also increasing stiffness and tensile strength.[57] 

 

We have recently reported on the synthesis of POSS-modified cellulose[65] and cellulose 

encapsulated POSS.[66] Investigation of the thermal and burning properties of flame-retarded 

PLA containing APP and POSS-modified cellulose reveal an improvement in storage modulus 

and reduction in hydrolytic degradation while maintaining a V-0 flammability rating and reduced 

heat release rate when compared to conventional IFRs.[48, 67] In the current work, PLA was 

melt-blended with each component of an intumescing flame retardant formulation to 

systematically analyze the effects of each component on the flammability, crystallinity, 

viscoelastic, and tensile strength properties of the composites. Samples were characterized with 

gel permeation chromatography, differential scanning calorimetry, powder X-ray diffraction, and 

melt rheology. 

 

2. Experimental* 

2.1. Materials 

Toluene (Acros, 99%), ethyl alcohol (Aaper, USP 200), chloroform (Fisher Scientific, ACS 

grade, < 1% ethanol stabilized), NaOH (Fisher, ACS grade), acetic acid (Aldrich, 99.8%), 

OctaPhenylPOSS (Hybrid Plastics), and GlycidylPhenylPOSS (Hybrid Plastics) were used as 

received. De-ionized water (> 16 M) was obtained from a Barnsted E-pure 3-module water 

purification system. Nanofibrillated cellulose (NFC, L040-6 grade, prepared by fibrillating the 

ends of 6 mm lengths of Lyocell regenerated fibers until reaching an MSR drainage of 40 mls), 

was obtained from Engineered Fibers Technology. The nanofibrils had an average diameter 

between 50 nm and 100 nm. The received fibers contained some impurities, which were removed 

with consecutive washes in 1 M acetic acid, deionized water, and 50/50 (v:v) ethanol/water 

 
* The policy of NIST is to use metric units of measurement in all its publications, and to provide statements of 

uncertainty for all original measurements.s In this document however, data from organizations outside NIST are 

shown, which may include measurements in non-metric units or measurements without uncertainty statements. 



solutions. The fibers were then dried at 90 °C for 24 h and partially de-bundled manually prior to 

use. Ammonium polyphosphate (APP, Clariant EXOLIT AP422 (NH4PO3)1000+), pentaerythritol 

(PER, Avacado, > 98%), & poly(lactic acid) (PLA, NatureWorks, PLA2002D) were dried for 1 h 

at 90 °C in a convection oven prior to use. POSS-modified cellulose using a 2:3 mass ratio of 

POSS to cellulose was prepared in toluene as described previously.[65] 

 

2.2. Preparation of Poly(lactic acid) Composites 

PLA composites were prepared by melt blending at 180 °C and 21 rad/s for 5 min in an Xplore 

15 mL twin-screw co-rotating mini-compounder (DSM Instruments). Components were dried at 

90 °C for 1 hr prior to charging the extruder. The abbreviations for the prepared composites are 

provided in Table 1. 

 

Table 1. Abbreviations used for polymers and composites described in this manuscript. 

Abbreviation Composite Formulation 

PLA PLA2002D, as received 

PLA-E PLA2002D, extruded 

PLA-APP PLA2002D, extruded with 11.25% APP (by mass) 

PLA-PNFC PLA2002D, extruded with 3.75% PNFC (by mass) 

PLA-NFC PLA2002D, extruded with 3.75% NFC (by mass) 

PLA-PER PLA2002D, extruded with 3.75% PER (by mass) 

PLA-Ph8POSS PLA2002D, extruded with 3.75% OctaPhenyl POSS (by mass) 

PLA-APP/PNFC PLA2002D, extruded with 11.25% APP and 3.75% PNFC (by mass) 

PLA-APP/NFC PLA2002D, extruded with 11.25% APP and 3.75% NFC (by mass) 

PLA-APP/PER PLA2002D, extruded with 11.25% APP and 3.75% PER (by mass) 

 

2.3. Instrumentation 

PLA or PLA composites were dissolved in a small amount of chloroform and filtered through a 

0.2 m PTFE filter disc using a glass syringe. The filtered PLA was cast in a glass dish, air dried, 

then placed in an oven at 90 °C until the mass did not change. If necessary, the filtering was 



repeated to form thin, transparent, colorless films. The molecular weight distributions of the PLA 

films were analyzed using Gel Permeation Chromatography (GPC) by Polymer Standards 

Service. Films were dissolved in chloroform to form 5.0 g/L solutions and injected into a PSS 

GPC system using an autoinjector with 100 L injection volume. The GPC system consisted of a 

PSS SDV precolumn (5 m, 100 Ǻ, ID 8.0 mm × 50 mm), 3 size distribution columns (5 m, 

100 Ǻ, ID 8.0 mm × 300 mm; 5 m, 1000 Ǻ, ID 8.0 mm × 300 mm; and 5 m, 1 × 105 Ǻ, ID 8.0 

mm × 300 mm), a PSS SECcurity 1200 HPLC pump, and a PSS SECcurity 1260 differential 

refractometer (RID). Calculations were performed using 15 polystryene standards (370 Da to 

2.52 MDa) and PSS WinGPC UniChrom, version 8.1 software. Data collected from all samples 

is believed to have an error of ±5 %. 

 

Horizontal and vertical burn tests were conducted in a fume hood using UL-94 standard 

procedures. Composite samples were hot pressed (25 MPa) into 125 mm × 13 mm × 3 mm 

molds at a temperature of 170 °C using a Carver hydraulic heated press. The reported burn rates 

have an uncertainty of  = ± 0.2 mm/min.  

 

Powder x-ray diffraction experiments were performed on a Rigaku Miniflex II powder x-ray 

diffractometer. The d-spacing was calculated from peak positions using Cu K radiation ( = 

0.15418 nm) and Bragg’s Law. Samples were prepared by pressing (6 atm) 0.5 g in a hydraulic 

press at 170°C. Standard x-ray measurements were performed over a 2 range of 2º–40º at a scan 

rate of 0.5°/min with an uncertainty of 2 = ± 0.001°. Spectra were deconvoluted and percent 

crystallinities were calculated using the PDXL integrated powder x-ray diffraction software.  

 

Thermal properties of poly(lactic acid) composites were characterized using a TA Instruments Q-

2000 Differential Scanning Calorimeter connected to a Refrigerated Cooling System. 3.0 mg ± 

0.2 mg samples were placed in aluminum pans with unsealed lids and the cell was purged with 

nitrogen at a flow rate of 50 mL/min. The samples were heated to 170 °C at a scan rate of 40 

°C/min and held at 170 °C for 5 min to melt the composites and erase thermal history. Then, 

samples were cooled to 20 °C (below the glass transition temperature) and heated to 90 °C for 

crystallization at 40 °C/min. The samples were annealed at 90 °C for 30 minutes, then quenched 



to 20 °C at a cooling rate of 40 °C/min. Samples were then heated to 170 °C at 10 °C/min for 

data collection. Each composite was analyzed in triplicate. The uncertainties are  = ±0.4 °C for 

the reported temperatures and  = ±0.3 J/g for the heat flow. 

 

Dynamic rheological experiments were performed on a TA Instruments AR-G2 oscillatory 

rheometer using 25 mm parallel plate geometry. Samples used for rheological experiments were 

disks of 23 mm diameter and ca. 2 mm prepared from compression molding. Rheological 

experiments were conducted in an inert nitrogen atmosphere at 170 °C, 180 °C and 190 °C for 

each specimen. Isothermal tests were performed with a frequency sweep between 0.1 rad/s and 

100 rad/s and a strain amplitude of 5 %. This strain amplitude was ascertained to be within the 

linear viscoelastic region of all the samples. Care was also taken to ensure that the normal force 

measured by the instrument was negligible prior to beginning each rheological experiment. 

 

The specimens for tensile tests (type 1BA, EN ISO 527- 2) of 1.5 mm thickness were produced 

by injection molding using a DSM mini-injection molding machine (3.5 cm3, cylinder capacity). 

The granules ware dried before injection molding (overnight at 60 °C, under vacuum). The 

temperature for injection molding was 190 °C, whereas the mold temperature was fixed at 70 °C. 

Due to a higher viscosity of the melt, a slightly higher injection molding temperature of 195 °C 

was necessary for the composites: PLA-E and PLA-PNFC. Tensile tests were performed using a 

Lloyd LR 10K tensile bench in accordance with the ASTM D 638-02a norm at a speed rate of 1 

mm/min and using a distance of 58 mm between grips. All tests were carried out on specimens 

previously conditioned for at least 48 hours at 20 (±2) °C under a relative humidity of 50 (±3) % 

and the values were averaged over a minimum of five measurements for each sample. 

 

3. Results and Discussion 

3.1. Structural & Interfacial Properties 

Differences in viscoelastic behavior of the composites were initially observed during the melt-

mixing process. Forces exerted in the extruder during processing increased when blending fibers 

and decreased when adding ammonium polyphosphate (APP) or pentaerythritol (PER). Similar 



to previous observations,[17] the color of the extruded composites revealed relative levels of 

degradation. Figure 1 illustrates the effects of each additive on the extruded and hot pressed 

composites. The addition of fibers or PER led to opaque composites, suggesting the formation of 

microcomposites. In addition, the PLA-PER composites cracked while cooling in the 

compression mold, illustrating a large decrease in impact strength. The addition of APP resulted 

in black composites, indicating acidic degradation of PLA and potentially some crosslinking. 

Combining APP and POSS-modified cellulose (PNFC) resulted in dark brown composites, 

whereas combining APP and nanofibrillated cellulose (NFC) or APP and PER produced 

composites with a resultant color consistent with simple combination of the two additives. This 

suggests that PNFC has the ability to inhibit the degradation processes during extrusion. 

 

 

Figure 1: Colors of extruded and melt pressed composites. From left to right, top to bottom, the 

composites shown are PLA, PLA-E, PLA-APP, PLA-PNFC, PLA-NFC, PLA-PER, PLA-

APP/PNFC, PLA-APP/NFC, and PLA-APP/PER. 

 

The physical characteristics observed during extrusion indicate varying degrees of degradation 

depending on the additive used. The molar mass of the extruded composites were characterized 

by gel permeation chromatography and are shown in Table 2. As observed by others, the PLA 

degrades while in the molten state,[10, 68, 69] resulting in a 15 % loss in molar mass in this 

study. Addition of APP further degrades the polymer, likely due to the formation of 

poly(phosphoric acid). It has been suggested that PLA degrades at its slowest rate at about pH = 



5.0,[70] and the pure PLA melt used in this study was found to have a pH between 4.0 and 4.7 

using acid-base dyes.[71] PER appears to degrade PLA as much as APP and is additive when 

combined with APP, though the exact cause is not known. Fibers do not appear to affect the 

degradation, whether added alone or in combination with APP. The one exception is the 

combination of APP and PNFC, which reduces the degradation of PLA relative to the addition of 

APP alone. This is in agreement with the viscosity average molar mass trend observed in PLA 

composites with 5 % flame retardant additives.[17] The polymer dispersion index remained 

unchanged for all composites, indicating that the composites are fairly well dispersed on the 

micro-scale and that the degradation occurs randomly and indiscriminately of polymer size.  

 

Table 2: Molar Mass of filtered composites by GPC.  

Sample Mn (kDa) Mw (kDa) Mz (kDa) Mp (kDa) PDI 

PLA 55.8 116 200 95.3 2.08 

PLA-E 45.6 96.4 162 81.2 2.11 

PLA-PNFC 45.1 93.4 160 78.5 2.07 

PLA-NFC 33.5 92.0 162 79.8 2.74 

PLA-PER 37.5 79.6 142 69.2 2.12 

PLA-APP 34.7 74.4 123 65.6 2.14 

PLA-APP/PNFC 39.8 89.4 151 78.3 2.25 

PLA-APP/NFC 36.8 78.5 140 67.7 2.13 

PLA-APP/PER 33.0 68.1 115 59.7 2.06 

Note: Mn = number average, Mw = weight average, Mz = z-average, Mp = peak, PDI = 

polydispersive index (Mw/Mn). Polymer samples were dissolved in CHCl3 for both filtering & 

GPC.  

 

3.3. Flammability Properties 

The flammability properties of the composites were characterized by UL-94 horizontal and 

vertical burn tests, as shown in Table 3. The horizontal burning characterization of PLA are quite 

variable test to test, but were not significantly affected by extrusion. The unextruded PLA 

extinguished twice prior to the 25 mm mark, once 5 mm after the mark, and once 20 mm after 



the mark. The burn rate was about the same for all samples. PLA-E extinguished twice prior to 

the 25 mm mark, once 5 mm after the mark, and once 8 mm after the mark. The burn rate was 

about the same as the unextruded PLA for all four tests. The addition of cellulose slightly 

increased the burn rate and resulted in complete consumption of the test bars. Both PNFC and 

PER reduced the flammability of the composite, though both composites failed the vertical burn 

tests. PLA-PNFC did appear to be slightly more flammable than PLA-PER, as the flame 

extinguished 1 – 2 seconds after removal of the Bunsen burner for PNFC versus 0 – 1 seconds 

for PER. It was observed that the elongation of the composite while burning PLA-PER was 

much higher than in any other composite, which may have cooled the material due to increased 

surface area. In the PLA-PNFC composite, the melt appeared to have lower cohesion than other 

composites, with larger burning drips that included some unmelted material. This may have been 

due to an increase in viscosity of the melt with the addition of the fibers. The addition of APP 

produced composites that extinguished in the vertical burn test as soon as the Bunsen burner was 

removed, but still generated burning drips during the ignition. Similar to what has been reported 

by Bourbigot and others, this resulted in a composite with a V-2 rating.[6] The addition of APP 

with any carbon source resulted in composites with nonflaming drips during ignition and flames 

that extinguished less than 1 s after removing the ignition source, as previously reported.[67]  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 3. UL-94 burn test results of poly(lactic acid) composites 

Composite HB rate 

(mm/min) 

HB length 

(mm) 

VB t1  

(s) 

VB t2  

(s) 

UL-94 

PLA 9.4 20 complete  NR 

PLA-E 9.2 8 complete  NR 

PLA-PNFC  0 complete  HB 

PLA-NFC 9.9 75 complete  NR 

PLA-PER  0 complete  HB 

PLA-APP  0 DNB DNB V-2 

PLA-APP/PNFC  0 DNB DNB V-0 

PLA-APP/NFC  0 DNB DNB V-0 

PLA-APP/PER  0 DNB DNB V-0 

 

3.4. Crystallinity 

Crystalline phases of the composites were examined using powder x-ray diffraction (XRD) after 

quench cooling samples and after annealing at 90 °C for 30 minutes. (cf Figure 2) In the 

quenched composites, there were no visible crystalline peaks associated with poly(lactic acid). 

Two amorphous peaks were evident, which could be convoluted using the PDXL integrated 

XRD software. A very small peak at 21.55° in the cellulose-containing samples was assigned to 

cellulose II. The two largest peaks associated with APP at 14.90° and 15.75° did not interfere 

with any other crystalline peaks. The peaks associated with PER all had interferences with other 

crystalline phases. In the annealed composites, peaks associated with crystalline PLA appeared. 

The two largest crystalline peaks for PLA at 16.60° and 18.90° did not interfere with any peaks 

associated with the other additives. In the pristine PLA sample the percent crystallinity was 

calculated to be 0.56%, which increased to 17.1% for the extruded sample. This is consistent 

with previous reported results regarding the increased crystallinity of PLA after extrusion.[72] 

The samples containing APP all had the same quantities of APP in them, so comparison of the 

ratio, A15.75/A16.60 could be used to determine relative crystallinities of PLA in the intumescing 

composites. The crystallinity was found to increase in the order, PLA-APP < PLA-APP/PER < 

PLA-APP/PNFC < PLA-APP/NFC.  



 
Figure 2. Powder x-ray diffraction of PLA composites containing intumescing flame retardants 

(a) quenched after compression molding and (b) after annealing at 90°C for 30 min. Plots have 

been shifted vertically for clarity. 

 

Differential scanning calorimetry was used to assess the transition temperatures of the 

composites after annealing. The PLA used in this study exhibits a double-melting peak (cf Figure 

3), which has been attributed to the formation of imperfect small crystals at lower temperatures 

followed by melting and recrystallization of larger, more perfect crystals at higher 

temperatures.[73-76] Factors that contribute to higher order, including longer curing times, 

higher optical purity, and nucleating agents, result in larger second melting peaks at higher 

temperatures. The transition temperatures for the composites obtained from DSC are shown in 

Table 4. The reported heat of fusion values are in J/g of composite, but the percent crystallinity 

has been adjusted to reflect J/g of poly(lactic acid). PLA2002D is a high molecular weight 

poly(l-lactic acid), with a 4 % by mass d-lactic acid content, leading to very slow crystallization 

kinetics. The 30 minute annealing time used in the DSC scans was only sufficient enough to 

crystallize 1% of the PLA, similar to what was observed in XRD. The degradation of PLA that 

occurs during extrusion increases the crystallization rate, leading to an average crystallinity of 

26% after the 30 minute annealing. This suggests that the 30 minute annealing time was 

insufficient to complete the crystallization process for the larger XRD samples shown 

previously. The slight increase in glass transition temperature may be due to the loss of residual 

monomer. (PLA2002D from the manufacturer typically contains about 0.3 % by mass residual 
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monomer). The additives have only minor effects on the transition temperatures, but they 

significantly alter the crystallinity of the PLA. The glass transition is broadened, suggesting 

some entanglement between the additives and the PLA matrix. The presence of cellulosic fibers 

or POSS does not significantly alter the transition temperatures or the crystallinity. Mathew, 

Oksman, and Sain also observed that cellulose acts as a nucleating agent, increasing the 

crystallinity of pristine PLA while attaining the same total crystallinity as PLA when 

annealed.[77] However, the presence of POSS appears to inhibit the formation of the more 

perfect crystals while maintaining the total crystallinity of the PLA. The presence of APP 

increases the glass transition, lowers the melting point of the imperfect crystals slightly, and 

markedly increases the crystallinity of PLA, regardless of the addition of a carbon source. The 

APP used in this study has a molar mass of about 90 kDa. The observed increase in glass 

transition of the PLA composite is likely due to polymer entanglement, inhibiting the segmental 

motion of PLA. PER acts as both a nucleating agent and as a plasticizer, and more of the lower 

temperature PLA crystals are formed. The increase in crystallinity when adding APP and PER 

may be one of the factors leading to increased brittleness when these flame retardants are 

used.[42, 44] The crystallinity increase can be moderated slightly by using cellulose fibers, 

particularly PNFC, as the carbon source. This is in contrast with the XRD data, which show 

higher crystallinities for PLA-NFC and PLA-PNFC. It may be that the larger samples used in x-

ray studies may not have been annealed long enough for complete crystallization. This would be 

consistent with the lower crystallinity found in the annealed PLA-E XRD sample and with the 

increased crystallization rate in the presence of cellulose noted in previous crystallization[13, 77] 

and dynamic mechanical analysis results.[17] 

 



 

Figure 3. Sample DSC scan of annealed PLA, PLA-E, PLA-APP/PNFC, and PLA-APP/PER, 

depicting a glass transition and two melting peaks. Plots have been shifted vertically for clarity. 

 

Table 4: Thermal properties of annealed composites by DSC. 

Sample Tg (°C) T1 (°C) T2 (°C) H1 

(J/g) 

H2 

(J/g) 

% Cryst. 

PLA 60.0 --- 156.2 0 0.89 0.95 

PLA-E 60.8 141.6 156.3 1.36 22.7 25.7 

PLA-PNFC 60.8 141.3 155.7 1.70 22.6 27.0 

PLA-NFC 60.4 141.4 155.9 1.42 22.3 26.4 

PLA-PER 59.4 140.1 155.6 1.41 28.3 33.0 

PLA-APP 61.6 140.7 156.6 1.59 25.5 32.7 

PLA-Ph8POSS 60.9 141.6 155.0 1.44 21.6 25.6 

PLA-APP/PNFC 61.7 140.7 156.5 1.45 23.6 31.4 

PLA-APP/NFC 61.7 140.8 156.5 1.22 24.4 32.2 

PLA-APP/PER 61.2 140.5 156.1 0.80 26.8 34.7 

% Crystallinity determined using Hfus, where 100% crystalline PLA = 93.5 J/g. 
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3.5. Melt Viscosity Behavior 

The processability of the composites was assessed by examining the oscillatory rheology of the 

melt at temperatures below the decomposition of the IFR. Complex viscosities for the 

composites at 170 °C are shown in Figure 4. PLA is known to exhibit shear thinning 

behavior,[78] which was observed at frequencies higher than 10 rad/s for pure PLA. The 

decrease in viscosity after extrusion is due predominantly to the decrease in molar mass.[78-80] 

The viscosity decreased slightly in the order PLA > PLA-APP > PLA-NFC. This was somewhat 

surprising, as the cellulosic fibers were expected to increase viscosity[81, 82] and the APP was 

expected to decrease viscosity due to the large decrease in PLA molar mass. This suggests that 

the cellulose was not well dispersed and that APP has good interfacial adhesion with PLA, 

resulting in polymer chain entanglement. The combination of APP and NFC did result in the 

expected rise in viscosity. All of these composites exhibited similar shear thinning behavior over 

the frequency range studied. The addition of PER or PNFC, however, exhibited a plasticizing 

effect with a much larger decrease in viscosity at low shear rates. Since PLA-APP/PER contains 

the plasticizing PER and has the lowest molar mass, it has the lowest viscosity of all the 

composites. When incorporated into a polymer matrix, POSS can reduce polymer motion 

through steric hindrance (leading to higher Tg and higher viscosity at low shear) or it can 

plasticize polymer motion due to its large void volume (leading to lower Tg and lower viscosity 

at low shear). In PNFC, the bulkiness of POSS appears to dominate, suggesting poor miscibility 

with PLA. However, in PLA-APP/PNFC, there is a very large viscosity at low frequencies, 

followed by a steady decrease at high frequencies. This is due to the cross-linking between 

cellulose and PLA through the opened cage structures on some of the POSS molecules.[17] At 

low shear, there is a large entanglement, which is disrupted at high shear, allowing the 

plasticizing effect of the POSS substituents. The temperature dependence of the complex 

viscosity, shown in Figure 5, supports this hypothesis, since the viscosity decrease with 

temperature is much smaller at low frequencies than at high frequencies. 

 



 
Figure 4. Complex viscosity of PLA composites at 5% strain vs. shear rates at 170 °C. 

 

 
Figure 5. Temperature dependence of complex viscosity of PLA-E, PLA-APP/PNFC, and PLA-

APP/PER at 5% strain. 
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The storage modulus and loss modulus of the composites at 170 °C is shown in figure 6. All 

composites except PLA-APP/PER and PLA-APP/PNFC exhibit similar profiles over the entire 

frequency range. The storage modulus increases at slightly faster rates as the frequency increases 

while the loss modulus increases linearly at a faster rate. The tan  (not shown) exhibits a 

maximum around 1 rad/s for all of these composites. The storage modulus and loss modulus 

increase at much lower rates for PLA-APP/PER and PLA-APP/PNFC, and their behavior over 

the frequency range are very similar. The estimated zero storage modulus for PLA-APP/PER is 

an order of magnitude higher than all the other composites, indicating a more solid-like behavior. 

The tan  for these two composites is nearly linear over the frequency range. 

 

  
Figure 6. (a) Storage modulus and (b) loss modulus of PLA composites at 5% strain vs. shear 

rates at 170 °C. 

 

 

3.6. Tensile Strength 

The tensile strengths of the composites are shown in Table 5, and an image of the specimens 

after testing are shown in Figure 7. The addition of POSS-modified cellulose may have lowered 

all the tensile properties slightly, but the deviations from pure extruded PLA was within the 
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experimental error. Since short cellulosic fibers typically reduce the tensile strength of undrawn 

PLA,[13, 83] it is likely that the surface coverage of POSS is sufficient enough in PNFC to 

maintain polymer strength. The addition of APP did not affect Young’s modulus, but did 

significantly reduce the strain at yield and break and slightly reduced the elongation at yield. The 

elongation at break appeared unaffected. It has been previously observed that APP, and 

intumescent formulations in general, reduce the tensile properties of the composite compared to 

the pristine polymer matrix.[40, 42-44, 49] The slight loss in elasticity for PLA-APP/PER is due 

to the plasticizing effect of PER and is consistent with the dynamic mechanical analysis results 

previously reported.[48, 67] The trends in the yield strength and elongation appear to correlate 

with the molar mass of the PLA. The elongation at break increased only for the PLA-APP/NFC. 

This is likely due to the presence of longer cellulose fibers,[84, 85] which may reduced in size 

for PNFC due to the partial dissolution and regeneration during the alkali synthesis process. The 

use of PER as a carbon source produced composites with the largest decrease in tensile strength, 

whereas the use of PNFC produced composites with the smallest drop in tensile strength.  

 

Table 5. Comparative mechanical properties of flame retarded PLA composites  

*εy = nominal strain at yield; εb = nominal strain at break.  

Standard deviations are given in brackets. 

 

 

Sample code 

 

E 

(MPa) 

σy 

(MPa) 

σb 

(MPa) 

εy * 

(%) 

εb* 

(%) 

PLA-E 3380 

(±100) 

64 (±1) 63 (±1) 2.9 (±0.1) 3.0 (±0.1) 

PLA-PNFC 3280 

(±170) 

63 (±1) 62 (±1) 2.8 (±0.1) 2.9 (±0.1) 

PLA-APP/PNFC  3240 (± 90) 49 (±1) 42 (±4) 2.6 (±0.2) 3.1 (±0.4) 

PLA-APP/NFC 3400 

(±260) 

49 (±1) 37 (±2) 2.6 (±0.1) 4.6 (±0.6) 

PLA-APP/PER 2940 

(±150) 

45 (±1) 43 (±2) 2.2 (±0.1) 2.6 (±0.4) 



 

Figure 7. Images of specimens after tensile testing. 

 

4. Conclusions 

POSS-modified cellulose nanofibers (PNFC) form a cross-linked structure when melt-blended 

with PLA. This structure helps form an integrated network and protects the composite from acid 

hydrolysis during extrusion, which minimizes both cellulose and PLA degradation. It was 

verified that both components of the conventional intumescing flame retardant, ammonium 

polyphosphate (APP) and pentaerythritol (PER) catalyze the degradation of PLA during 

extrusion. The addition of unmodified cellulose (NFC) increases the flammability of PLA, even 

at the low loading of 3.75 % by mass. Use of the POSS-modified cellulose improves 

flammability to achieve an HB rating in UL-94 tests. The addition of only APP produces a 

composite with a V-2 rating. Further addition of cellulose or PER achieves a V-0 rating. The 

addition of cellulose increased the crystallization rate of PLA, but did not affect the total 

crystallinity. Both APP and PER increase the crystallinity of PLA. Furthermore, PER was found 

to have a plasticizing effect on the polymer. PNFC had the ability to limit the crystallinity 

increase of APP additions. The melt viscosity behaviors of the composites were very similar to 

each other, with the exception of PLA-APP/PNFC and PLA-APP/PER. For the intumescing 

composites, complex viscosities indicated competing factors of PLA degradation (lower 

viscosities) and polymer entanglements with APP (higher viscosities). Both PER had a 

plasticizing effect, which dominated the melt rheology behavior of composites containing this 



component. PNFC also had a plasticizing effect, but the cross-linked network that formed in the 

presence of APP dominated its rheological behavior. Viscosity and storage modulus were high at 

low shear and did not decrease much with increasing temperature. At high shear, the network 

was disrupted, and the plasticizing effect of PNFC dominated. Tensile tests indicated that 

Young’s modulus was relatively invariant with any additive, though a small decrease was 

observed for the PLA-APP/PER composite. The tensile strength and elongation decreased by 

25 % and 10 %, respectively, when adding APP with any carbon source. The addition of only 

PNFC did not affect the tensile properties. PLA-APP/PNFC exhibited the best tensile properties 

among all the intumescing PLA composites. The ability of PNFC to form a cross-linked network 

with APP reveals the benefits of using this carbon source for flame retarding PLA. 
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