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Abstract 

We investigate the miscibility of acrylic polyhedral oligomeric silsesquioxanes (POSS) 

[characteristic size d ≈ 2 nm] and poly(methyl methacrylate)(PMMA) in order to determine the 

effect of well-dispersed POSS nanoparticles on the thermomechanical properties of PMMA. Two 

different acrylic POSS species (unmodified and hydrogenated) were blended separately with 

PMMA at volume fractions up to φ = 0.30. Both POSS species have a plasticizing effect on 

PMMA by lowering the glass transition temperature Tg and decreasing the melt-state linear 

viscoelastic moduli measured in small amplitude oscillatory shear flow. The unmodified acrylic-

POSS has better miscibility with PMMA than the hydrogenated form, approaching complete 

miscibility for loadings φ < 0.10. At a loading φ = 0.05, the unmodified acrylic POSS induces a 

4.9°C decrease in the Tg of PMMA, far less than the 17.4°C decrease in the glass transition 

temperature observed in a blend of 5 vol% dioctyl phthalate (DOP) in PMMA; however, the 

decrease in the glass transition temperature per added plasticizer molecule is nearly the same in 

the unmodified acrylic-POSS−PMMA blend compared with the DOP−PMMA blend. Time-

temperature superposition (TTS) was applied successfully to the storage and loss moduli data and 

the resulting shift factors were correlated with a significant increase in free volume of the blends. 

The fractional free volume f0 = 0.046 for PMMA at T0 = 170°C while for a blend of 5 vol% 

unmodified acrylic-POSS in PMMA f0 = 0.057, which corresponds to an addition of 0.47 nm3 per 

added POSS molecule at φ = 0.05. The degree of dispersion was characterized using both wide-

angle x-ray diffraction (WAXD) and dynamic mechanical analysis (DMA). Diffraction patterns 

for both blend systems show clear evidence of phase separation at φ = 0.20 and higher, but no 

significant phase separation is evident at φ = 0.10 and lower. The storage modulus measured in 

DMA indicates appreciable phase separation for unmodified acrylic POSS loadings φ ≥ 0.10, 

while no evidence of phase separation is present in the φ = 0.05 blend in DMA. 
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1. Introduction 

 Polymers filled with very small nanoparticles (d < 15 nm) have been studied in 

great detail both theoretically and experimentally in recent years and a number of unusual 

results have been reported[1-8]. While conventional fillers (d ≥ 50 nm) reinforce polymer 

matrices regardless of the polymer-particle interaction, nanoparticles have shown the 

ability to either reinforce or plasticize polymer matrices depending on their size and the 

interfacial interaction between the polymer and the nanoparticle. Roberts et al.[5] 

reported the effect of particle size in silicate particle−poly(dimethyl siloxane) blends. 

Very small particles (d = 0.7 nm) reduced the viscosity of poly(dimethyl siloxane) while 

larger silicate particles (d = 4.4 nm) increased the viscosity. Mackay et al.[3] further 

demonstrated the effect of very small size by blending crosslinked poly(styrene) particles 

(d = 6−10 nm) with linear poly(styrene). They reported as much as a 70% decrease in 

viscosity with the addition of nanoparticles and also a decrease in the glass transition 

temperature Tg. Zhang and Archer[6] reported the dramatic effect that polymer-particle 

interactions have on polymer-nanoparticle rheology. They observed solid-like behavior in 

the linear viscoelastic properties of poly(ethylene oxide) when bare silica nanoparticles 

(d = 12 nm) were added at a volume fraction of only φ = 0.02, but there was no effect on 

the rheological properties when the polymer-nanoparticle interaction was essentially 

athermal. Starr et al.[7,8] performed a computational study that simulated a polymer 

chain near a nanoparticle (d = 10 nm) and calculated cases for which the polymer-

nanoparticle interaction was either attractive or non-attractive. For the attractive case, the 

glass transition temperature Tg increased by approximately 6% for a particle loading of 
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8 wt% while for the non-attractive case the Tg decreased by a similar amount at the same 

loading. McCoy et al.[4] reported similar results for polymers in confined geometries. 

A class of nanoparticles that has drawn significant attention recently are 

polyhedral oligomeric silsesquioxanes(POSS). They are hybrid organic-inorganic 

nanoparticles with a cage structure RxTx, where R represents an organic group on each 

corner, T represents (SiO1.5), and x commonly has values of 8, 10, or 12. An R10T10 

POSS cage (d ≈ 2 nm) with acrylic R-groups is shown in Figure 1(a). In light of the 

recent work on polymer−nanoparticle systems, the hybrid structure of POSS particles, 

with a silica core and a variable organic shell, offers a precise way to vary the 

polymer−nanoparticle interaction and thereby achieve either plasticization or 

reinforcement, depending on the application. A wide variety of studies have been carried 

out on POSS-containing copolymers and POSS-homopolymer blends[9], probing their 

thermal[10-17], morphological[10,13,14,17-25], mechanical[21,23,24,26,27], and self-

assembly[10,28] properties. The rheological behavior of POSS-filled homopolymers has 

been studied by us[13] and by others[29]. In both cases, the POSS filler tended to phase 

separate into microcrystallites, even at loadings as small as φ = 0.01. Despite this phase 

separation, we observed a slight decrease in the viscosity for loadings φ < 0.05 [13]. This 

decrease was attributed to a small amount of molecularly-dispersed POSS particles that 

plasticized the matrix in the melt state at small loadings; however we did not observe a 

decrease in either Tg or an increase in the fractional free volume f0, which would be 

expected if plasticization were occurring.  

 The difficulty in suppressing crystallization of the POSS fillers when dispersed in 

homopolymers led to the selection of a non-crystallizable POSS species for the present 
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study. To further improve the dispersion in PMMA, two POSS species with acrylic R-

groups were chosen. One contained pendant carbon-carbon double bonds [pictured in 

Figure 1(a)] and the other was hydrogenated to reduce the double bonds to single bonds. 

2. Experimental Section 

2.1 Materials 

 The polymer used in the present study was a commercial poly(methyl 

methacrylate)(PMMA) resin obtained from Atofina Chemicals (Atoglas V920) with a 

weight average molecular weight Mw = 80,200 g/mol and a polydispersity Mw/Mn = 1.7. 

The PMMA was blended with two similar but distinct acrylic-POSS species: the first 

contained methacryloxypropyl R-groups (Hybrid Plastics Methacryl-POSS) and was used 

as received, the second was a hydrogenated form of the first that contained no carbon-

carbon double bonds. Both types of POSS were mixtures of T8, T10, T12, and T14 cages, 

with the T10 cages being the majority component (≈ 60% as measured by NMR). The 

chemical structure of a T10 cage of the unmodified acrylic-POSS is pictured in Figure 1. 

Both types of acrylic-POSS had a density ρ = 1.19 g/cm3. 

2.2 Hydrogenation of (Methacryloxypropyl)n(SiO3/2)n 

In a glass-lined PARR pressure vessel, 13 grams of 

(methacryloxypropyl)n(SiO3/2)n (Hybrid Plastics) was dissolved in 50 mL of dry toluene 

along with 50 mg of 5% palladium on carbon catalyst (Aldrich).  The reactor was 

pressurized to 500 psi of hydrogen gas and heated to 70 ˚C for 14 hours.  After cooling 

to room temperature, the reactor was reduced to atmospheric pressure and the solution 

was filtered through a short pad of silica to remove the catalyst.  Removal of the toluene 

solvent produced the thick viscous product.  Proton nmr spectroscopy showed the 
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complete removal of starting material olefinic protons at 6.0 and 5.5 ppm.   1H NMR 

(CDCl3 referenced to residual CHCl3 at 7.26 ppm) 3.99 (mult, 2H, CH2O), 2.50 (sept, 3JH-

H = 6.8 Hz, 1H, CH), 1.67 (mult, 2H, CH2CH2CH2), 1.12 (d, 3JH-H = 6.8 Hz, 6H, CH3), 

0.63 (mult, 2H, SiCH2). 13C{1H} NMR (CDCl3 referenced at 77.0 ppm; multiple peaks 

are observed due to the presence of a variety of POSS cages sizes with n = 10 and 12 the 

most abundant) 176.92 & 176.89 (C=O), 65.86 & 65.81 (OCH2), 33.84 (CH), 22.35 & 

22.22 (CH2CH2CH2), 18.91 (CH3), 9.02 & 8.50 (SiCH2). 29Si{1H} NMR (referenced to 

external SiMe4 at 0 ppm) –65.6, -66.6 (T8), -67.5, -67.6, -67.7, -67.8, -68.1, -68.2 (T12), -

68.5 (T10), -70.9 (T12). 

2.3 Solution Blending and Sample Preparation 

 Blends were prepared by dissolving PMMA and acrylic-POSS at 

approximately 10 wt% in THF at room temperature. The solutions were poured into a 

partially-covered petri dish and the solvent was evaporated over a period of 24 hours. The 

cast films were then further dried in a vacuum oven at 100°C for 48 hours. Lower 

temperatures were insufficient to remove all of the solvent. Samples for rheological and 

dynamic mechanical analysis were molded in a Carver Press at a temperature T = 190°C. 

2.4 Thermal and Morphological Characterization 

 The blends were characterized using both differential scanning calorimetry (DSC) 

and dynamic mechanical analysis (DMA). The DSC tests were performed on a TA 

Instruments Q1000. Samples were heated to T ≥ Tg + 50°C at a rate of 5°C/min, cooled to 

T = −90°C at the same rate, and data were collected on the second heating ramp at 

5°C/min. Glass transition temperatures Tg were determined from the inflection point in 

the heat flow versus temperature curves. The DMA measurements were carried out on a 
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TA Instruments Q800 using rectangular samples (50 mm × 12 mm × 3 mm) in a three-

point bending geometry. Samples were cooled to T = −80°C and held for five minutes 

before being subsequently heated to T = 150°C at a rate of 3°C/min. 

 Wide angle x-ray diffraction (WAXD) was performed on a Rigaku RU300 18kW 

rotating anode generator with a 250 mm diffractometer. Tests were carried out at 23°C 

using CuKα radiation.  

2.5 Rheological Characterization 

 Rheological tests were performed on a TA Instruments AR2000 controlled-stress 

rheometer. Samples were tested between 25 mm parallel plates in small amplitude 

oscillatory shear flow at strains between 0.1 and 2%. The average gap separation was 

2 mm. Master curves of the storage modulus G′ and the loss modulus G″ were generated 

using horizontal shift factors aT determined from the loss tangent tan δ = G″/G′ over the 

temperature range 125°C ≤ T ≤ 210°C. Subsequent vertical shift factors bT were required 

to account for changes in density and variations in the gap separation with temperature. 

 

3. Results and Discussion  

3.1 Differential Scanning Calorimetry 

In Figure 2(a) we plot differential scanning calorimetry (DSC) curves for the 

unmodified acrylic-POSS−PMMA blends. Loadings up to φ = 0.30 lead to a decrease in 

the glass transition temperature Tg and a broadening of the glass transition region. In the 

φ = 0.30 blend, a second glass transition event appears at T = −55°C. This corresponds to 

the Tg of the pure POSS and indicates significant phase separation at this loading. This is 

also the point at which optical clarity of the unmodified acrylic-POSS blends is lost. The 
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curve for the pure acrylic-POSS in Figure 2(a) shows the beginning of a large endotherm 

at T = 120°C. This is due to crosslinking initiated by the pendant carbon-carbon double 

bonds on the corners of the acrylic-POSS cages. The only measured composition to show 

evidence of this crosslinking in DSC was φ = 0.30, which showed a very shallow 

endotherm beginning slightly above T = 150°C, just outside the range of the data plotted 

in Figure 2. 

 In Figure 2(b) we show DSC curves for the hydrogenated form of the acrylic-

POSS in PMMA. A similar trend of decreasing glass transition temperature Tg with 

increasing POSS loading is observed, however the drop in Tg is less substantial in the 

hydrogenated system. The decreased plasticization is also accompanied by much lower 

optical clarity when compared with the unmodified acrylic-POSS−PMMA blends at 

comparable POSS volume fractions. A comparison between the φ = 0.20 blends in both 

the unmodified and the hydrogenated systems is shown in Figure 1(b). The unmodified 

POSS blend is nearly transparent and the hydrogenated blend is almost completely 

opaque. The hint of a second Tg due to phase separation is present in the φ = 0.20 

hydrogenated blend at T ≈ -68°C [see inset to Figure 2(b)] and becomes obvious in the 

φ = 0.30 blend. No sharp endotherm at temperatures above 150°C is observed in the 

hydrogenated POSS, nor in any of the blends, indicating that crosslinking does not occur 

in this system. 

The values of the glass transition temperatures Tg extracted from the DSC scans in 

Figure 2 are plotted in Figure 3 for both the unmodified and the hydrogenated acrylic-

POSS−PMMA blends. The magnitude of the drop in Tg is always larger in the 

unmodified acrylic-POSS−PMMA system, and the difference grows progressively 
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greater at higher loadings. The hydrogenated acrylic-POSS ceases to further plasticize the 

PMMA matrix above φ  = 0.10, whereas at φ = 0.20 the unmodified acrylic-POSS 

continues to induce a modest decrease in Tg. For comparison, the well-known Fox 

equation[30] has also been plotted as the dotted line in Figure 3: 

PMMAgPOSSgg TTT ,,

)1(1 φφ −+=  (1) 

where PMMAgT ,  and POSSgT ,  are the pure component glass transition temperatures of the 

PMMA (104°C) and the unmodified acrylic-POSS (−55°C) .  

Neither blend system follows the prediction of the Fox equation; however, each 

system does have an approximately linear decrease in Tg at loadings φ ≤ 0.10 and they 

therefore follow the common relation for polymer-plasticizer blends at low 

concentrations of plasticizer:[31] 

φkTT PMMAgg −= ,  (2) 

where k is a constant that typically ranges from 200oC to 500oC for plasticized 

polystyrene blends. By fitting the values of Tg at φ ≤ 0.05, k values of 98oC and 50oC are 

obtained for the unmodified and the hydrogenated acrylic-POSS−PMMA blends, 

respectively. These k values are well below the expected range for conventional 

plasticizers. It is likely that the relatively larger sizes of the POSS molecules (VPOSS = 

1297 cm3/mol) compared with conventional plasticizers may be a primary cause for this 

disparity in k values. For comparison, we added dioctyl phthalate(DOP, VDOP = 403 

cm3/mol) to PMMA. At a DOP concentration φ = 0.05, the measured Tg was 86.1°C and 

at φ = 0.10 the Tg was 71.6oC., corresponding to a k value of 320oC, or approximately 3.2 

times that observed in the unmodified acrylic-POSS−PMMA blends. At a plasticizer 
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loading of φ = 0.05, the actual number density of added plasticizer particles was much 

larger in the DOP−PMMA blend (1.26 × 10-4 mol per cm3 of blend) than in the 

unmodified acrylic-POSS−PMMA blend (0.39 × 10-4 mol per cm3 of blend). Therefore, 

adding 3.2 times as many DOP molecules per unit volume as acrylic-POSS molecules 

resulted in a comparably enhanced reduction in the Tg (reflected in the coefficient k in 

Equation 2) beyond that observed in the acrylic-POSS−PMMA blend. Therefore the 

lower degree of plasticization observed in the unmodified acrylic-POSS−PMMA blends 

at low loadings (φ ≤ 0.10) is a result of the larger size of the POSS molecules which, at a 

given volume fraction, leads to far fewer added POSS cages than in the DOP-PMMA 

blend. Consequently there is relatively less polymer-particle contact over which free 

volume can be generated in a POSS-modified blend, and hence the Tg reduction is 

correspondingly reduced. 

 

3.2 Wide Angle X-ray Diffraction 

 Wide angle X-ray diffraction (WAXD) was used to further characterize the 

miscibility of the acrylic-POSS−PMMA blends. Diffraction patterns for the unmodified 

and the hydrogenated acrylic-POSS systems are shown in Figures 4(a) and 4(b), 

respectively. The characteristics of the WAXD patterns for the two blend systems are 

similar at comparable loadings of POSS. In each case, the φ = 0.05 and φ = 0.10 

diffraction patterns have only a broad amorphous peak at 2θ ≈ 14°, corresponding to the 

amorphous PMMA matrix peak. At φ = 0.20, a shoulder matching the high-angle 

amorphous peak of the acrylic-POSS at 2θ ≈ 19.3° appears, and becomes more prominent 

at φ = 30. This corresponds to a spacing d = 0.46 nm, which is within the range 
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d = 0.4−0.5 nm at which crystallizable POSS species and POSS-containing copolymers 

show a strong secondary peak[13,18-20,25]. Broad peaks at 2θ = 6.56° in the φ = 0.20 

unmodified POSS blend and 2θ = 6.40° in the φ = 0.20 hydrogenated POSS blend 

correspond to the low angle amorphous peaks in the pure POSS spectra. A spacing of 

d = 1.35 nm for the unmodified T10 acrylic-POSS molecule of molecular weight 1544 

g/mol is a reasonable center-to-center spacing; this would correspond to a mass density of 

1.04 g/cm3 if the POSS were arranged on a simple cubic lattice (SC) and a mass density 

of 1.47 g/cm3 for a face-centered cubic lattice (FCC). The actual density of the non-

crystalline acrylic-POSS at room temperature is 1.19 g/cm3, comfortably between the 

sparse SC limit and the close-packed FCC limit. 

 We would expect to see a shift in the location of the amorphous peak of the 

PMMA (2θ = 14.1°) if indeed POSS particles were distributed throughout the matrix. 

The nanoparticles would be expected to push chains apart and shift the peak to a higher d 

spacing (smaller 2θ angle). However, the POSS present in the blends tends to slightly 

shift the locations of the PMMA matrix peaks at loadings φ = 0.05 and φ = 0.10 in 

Figure 4 to higher 2θ values because of the very broad signal of the POSS centered at 

2θ = 19.3°. This does not allow the precise location of the matrix peak to be determined 

in these blends. However, the matrix peak and the POSS peak begin to separate at 

φ = 0.20 in both Figure 4(a) and Figure 4(b); at φ = 0.30 it is possible to see both peaks. 

In the unmodified acrylic-POSS−PMMA blend spectra in Figure 4(a) at φ = 0.30, the 

matrix peak location is 2θ = 13.8° (d = 0.641 nm), while in the hydrogenated blends in 

Figure 4(b) at φ = 0.30 the matrix peak location is 2θ = 14.0° (d = 0.632 nm). These are 

both larger d spacings than in the pure PMMA (d = 0.627 nm), indicating penetration of 
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the POSS nanoparticles between the PMMA chains. As expected, the unmodified acrylic-

POSS [Figure 4(a)], which is more miscible than the hydrogenated form, shows a larger 

shift in the amorphous peak location.    

3.3 Rheology 

In Figures 5 and 6, we plot master curves of the storage and loss moduli for 

PMMA filled respectively with unmodified and hydrogenated acrylic-POSS at a 

reference temperature T0 = 170°C. All blends closely followed the principles of time-

temperature superposition (TTS) with a lateral shift aT(T,T0) and a vertical shift bT(T,T0) 

(31). The addition of POSS causes significant shifts downward and to the right in the 

storage modulus G′ (ω) and the loss modulus G″(ω). The shifts are greatest at loadings 

φ ≤ 0.10, which is also the region of steepest decrease in the Tg shown in Figure 3. In the 

blends containing φ ≥ 0.05 unmodified acrylic-POSS in PMMA (Figure 5), the storage 

modulus measured at low frequencies deviates from the characteristic terminal slope of 2 

expected for simple viscoelastic fluids; this is caused by crosslinking of the pendant 

carbon-carbon double bonds on the unmodified acrylic-POSS. The φ = 0.05 blend and the 

φ = 0.10 blend begin to show crosslinking effects at a reduced frequency aTω ≈ 10-2 rad/s, 

whereas the φ = 0.30 blend shows this effect close to aTω ≈ 10-1 rad/s. Samples 

containing φ ≥ 0.05 unmodified acrylic-POSS could not be fully redissolved in THF after 

testing, and GPC showed that no noticeable amount of the polymer was able to pass 

through a 0.45 µm filter. The φ = 0.02 blend does not show any effect of crosslinking in 

Figure 5(a). The concentration dependence of the onset of crosslinking provides a clear 

indication that it is initiated by POSS-POSS contacts in the melt. At very low loadings 

(φ < 0.05), POSS-POSS interparticle contacts are rare and thus no crosslinked network is 
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formed; however, at higher loadings, the POSS cages contact each other regularly at high 

temperatures and are increasingly prone to react with each other to form a weakly 

crosslinked gel.  

A common way to quantify the effect of a plasticizer on the linear viscoelastic 

properties of a polymer melt is with the relation[32]: 

{ } ( )n

unfilledN

N

G
G φφ −= 10

,

0

  (3) 

where { }φ0
NG  and 0

,unfilledNG  are the rubbery plateau moduli for a polymer containing a 

volume fraction φ of plasticizer and an unfilled polymer respectively, and the exponent n 

is a constant. The plateau modulus of the unfilled polymer ( 0
,unfilledNG ) was determined 

using the convention[33-35]: 

( )( ) mintan
0 ' →= δωGGN   (4) 

so that the plateau modulus is taken as the point in the storage modulus at which the loss 

tangent  tan δ = G″/G′ passes through a minimum. To determine the plateau moduli of 

the POSS−PMMA blends, the storage modulus curves for the blends were shifted 

manually by a horizontal factor aφ and a vertical factor bφ onto the G′ curve of the 

unfilled polymer[32,36]. These shifted curves are shown in Figure 7. The plateau 

modulus for each blend was then calculated as { } 0
,

0
unfilledNN GbG φφ = . These values of the 

plateau modulus are reported in Table 1. The quantity φblog−  is plotted against 

( )φ−− 1log  in Figure 8. The slope of the linear fit to these data is equal to the exponent n 

in Equation 3. Many previous studies on polymer-plasticizer systems have reported 

values of n between 2.0 and 2.3 [32,37-40]. At POSS loadings φ ≤ 0.10, the value of n is 



Kopesky et al. 

 14

2.47 ± 0.28 for the unmodified acrylic-POSS PMMA blends and 2.24 ± 0.10 for the 

blends containing hydrogenated acrylic-POSS. These values are, within experimental 

error, similar to previous results for plasticized polymers. This volume fraction 

dependence of the plateau modulus on the POSS nanoparticle content is in contrast to the 

results obtained for the reduction of the glass transition temperature for POSS loadings 

φ ≤ 0.10, where the reduction in the Tg was much less than that induced by the 

conventional plasticizer dioctyl phthalate. Above φ = 0.10, the exponent n decreases 

significantly in the unmodified acrylic-POSS−PMMA blends to a value of 0.96 ± 0.05 

due to the significant degree of phase separation of added POSS at these higher loadings. 

3.4 Time-Temperature Superposition and Free Volume 

 The TTS shift factors aT obtained from the construction of the thermorheological 

master curves in Figures 5 and 6 were analyzed using the WLF equation[31]:  

( )
( )0

0
2

0
0

1log
TTc
TTc

aT −+
−−

=   (5) 

where c1
0 and c2

0 are constants and T0 is the reference temperature. Values of the 

constants c1
0 and c2

0 were determined by plotting the quantity ( ) TaTT log/0−−  against 

( )0TT − ;[31,41] the coefficient c1
0 was obtained from the reciprocal of the slope, and the 

coefficient c2
0 from the intercept. The WLF coefficients are reported in Table 1. The 

addition of unmodified acrylic-POSS leads to a strong decrease in c1
0 and a significant 

increase in c2
0. Similar trends are observed in the hydrogenated system, however the 

changes are less substantial. An important parameter that can be obtained from these fits 

is the fractional free volume f0:  
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0
1

0 303.2 c
Bf =   (6) 

where B is a constant usually assumed to be unity[31]. These fractional free volume 

values are plotted in Figure 9. A clear trend is observed in the unmodified acrylic-POSS 

blend system. The free volume increases significantly for loadings φ ≤ 0.10 and appears 

to asymptote towards a maximum value for φ ≥ 0.20.  

The differential between the fractional free volume of the unfilled PMMA (f0 = 

0.046) and the φ = 0.05 blend (f0 = 0.057) is ∆f0 = 0.011, or 1.1 × 1019 nm3 per cm3 of the 

blend. At φ = 0.05, there are 2.32 × 1019 POSS molecules per cm3 of the blend (assuming 

all T10 cages); from these values we may infer that the amount of free volume generated 

per added POSS molecule is 0.47 nm3. The T10 acrylic-POSS cage has an approximate 

diameter of 2 nm, which corresponds to a hydrodynamic volume of 4.2 nm3. The dense 

silica core, which contains 10 silicon atoms and 15 oxygen atoms, takes up less than 10% 

of this volume but contains 34% of the mass. Thus the volume of shell containing the 

acrylic R-groups is more than 3.5 nm3. The density of the ten R-groups in this shell is 

approximately 0.45 g/cm3, or half the bulk density of 0.9 g/cm3 expected if the 

methacryloxypropyl R-groups were in their bulk state. This leaves approximately 

1.75 nm3 in the outer shell unfilled. The free volume increase per POSS molecule 

(0.47 nm3) is approximately one-fourth this value and is quite reasonable when one 

considers the difficulty in fitting the relatively large polymer chains (Rg ≈ 15 nm) into the 

small spaces between R-groups (< 0.5 nm). The values of the fractional free volume 

plateau at φ = 0.20 because the POSS phase-separates and begins to pack in its bulk 

amorphous configuration. 
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 The free volume data in Figure 9 help clarify our previous results for PMMA 

filled with crystallizable-POSS species[13]. This earlier study reported that the POSS had 

a strong tendency to phase-separate into crystallites, even at loadings of φ = 0.01, and we 

could not find a clear trend in free volume with increasing POSS content. The present 

data show that molecularly-dispersed POSS nanoparticles do plasticize PMMA by 

increasing the free volume within the matrix.  

The fractional free volume f0 at the reference temperature T0 may be converted to 

the fractional free volume fg at the glass transition temperature Tg using the relation[31]: 

( )
0

2

0
0

20

c
TTcf

f g
g

−+
=   (7) 

Values of fg/B are listed in Table 1 and plotted at the bottom of Figure 9. These values are 

approximately the same for all blends within experimental error. This indicates that, in 

these two blend systems, the glass transition is essentially an iso-free volume condition, 

and long range molecular motion occurs only when the free volume reaches the same 

critical level regardless of blend composition. The differential increase in free volume 

∆f0(φ) arising from the addition of POSS therefore serves to lower the temperature at 

which the total available free volume within the blends reaches this critical level, which 

is fg = 0.030 ± 0.001 for this set of PMMA-based materials. This result is in good 

agreement with the range of values reported by Ferry for conventional thermoplastics, 

which tend to fall in the range 0.025 ≤ fg ≤ 0.035 [31]. 

3.5 Dynamic Mechanical Analysis 

 We have shown that acrylic-POSS has a significant softening effect on the melt-

state properties of PMMA (Figures 5 and 6). The effect on the solid-state properties is 
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also interesting in that it can reveal how the materials will behave at room temperature 

and below. Dynamic mechanical analysis was performed on the more miscible 

unmodified acrylic-POSS−PMMA blends. The storage modulus E′ and the loss tangent 

tan δ = E″/E′  measured at a frequency of 1 Hz are plotted as a function of temperature in 

Figure 10. The trend observed in E′ with increasing POSS loading is a decrease in the 

magnitude of the glassy modulus and a transition into the rubbery region at lower 

temperatures, consistent with a plasticizing effect.  

When focusing more closely on the low temperature region −80°C ≤ T ≤ 0°C [see 

inset to Figure 10(a)], the effect of the plasticizer in the Tg region of the POSS can be 

observed. The φ = 0.05 blend has a lower modulus than the unfilled PMMA but the two 

curves show no discernable difference in shape. The absence of any stiffening in the Tg 

region of the POSS is clear evidence that the POSS is dispersed on a molecular scale at a 

loading of φ = 0.05. The φ = 0.10 blend has the same value of the storage modulus as the 

φ = 0.05 blend at T = −80°C but the modulus diverges to lower values as the temperature 

increases, indicating some aggregation of the POSS. The most significant difference is in 

the φ = 0.20 blend, which has the highest modulus below the Tg of the POSS 

(Tg,POSS = −55°C) but when the temperature is increased to T = −25°C, it has the lowest 

modulus of any of the samples tested. This low temperature stiffening is caused by 

vitrified domains of phase-separated POSS that reinforce the sample like a rigid filler and 

make it stiffer than the pure matrix material. Above the Tg of the POSS, however, these 

hard POSS domains soften into sub-micron sized pools that reduce the stiffness of the 

material. Not surprisingly, this behavior also significantly affects the loss tangent E″/E′ 

shown in Figure 10(b). Not only is the β-relaxation of the PMMA shifted to lower 
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temperatures with the addition of POSS, but in the glass transition region of the POSS, a 

conspicuous shoulder is present in the φ = 0.20 blend. 

4. Conclusions 

Blends of poly(methyl methacrylate)(PMMA) with two acrylic polyhedral 

oligomeric silsesquioxanes(POSS) were analyzed to determine the effect of well-

dispersed POSS nanoparticles on the thermomechanical properties of PMMA. 

Differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and melt 

rheology all showed that POSS, when molecularly dispersed, behaved like a plasticizer. 

Differential scanning calorimetry(DSC) showed a larger drop in the glass transition 

temperature Tg in the blends containing unmodified acrylic-POSS (∆Tg ≈ 11°C at 

20.0=POSSφ ) when compared with hydrogenated acrylic-POSS blends at the same 

loading (∆Tg ≈ 6°C). This difference in the degree of plasticization of the glass transition 

temperature was related to the degree of miscibility of the POSS and PMMA. Analysis of 

wide-angle x-ray diffraction patterns of both blend systems showed that significant phase 

separation of the POSS became apparent at loadings of φ ≥ 0.20. 

 Time temperature superposition(TTS) was successfully employed for all blends  

in order to construct thermorheological master curves and showed that the decrease in Tg 

was due to a substantial increase in the free volume of the blends. This plasticization 

resulted in a substantial decrease in the magnitude of the storage modulus G′ and the loss 

modulus G″ in small amplitude oscillatory shear-flow. Analysis of the TTS data indicated 

that the free volume at the glass transition was virtually the same for all blends tested. 

Dynamic mechanical analysis of unmodified acrylic-POSS−PMMA blends showed a 

consistent decrease in the storage modulus with increasing POSS loading at room 
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temperature; however, at a lower temperature range −80°C ≤ T ≤ 0°C that brackets the Tg 

of the POSS (Tg,POSS = −55°C), loadings of φ ≥ 0.10 showed evidence of a stiffening 

effect caused by vitrification of phase-separated POSS. No stiffening was observed in the 

φ = 0.05 blend, indicating that molecular scale dispersion was achieved at that loading in 

the unmodified acrylic-POSS−PMMA blends. 
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Table 1. Properties of Methacryl-POSS PMMA Blends (T 0 = 170oC)
Vol% POSS Hydrogenated T g [oC] G N

0 (Pa) c 1
0 c 2

0 [K] f0/B fg/B
0 103.6 5.15 x 105 9.5 187 0.046 0.029
2 No 100.7 4.78 x 105 8.4 162 0.052 0.030
5 No 98.7 4.62 x 105 7.7 148 0.057 0.029

10 No 95.3 3.97 x 105 6.8 141 0.064 0.030
20 No 92.7 3.47 x 105 7.0 153 0.062 0.030
30 No 91.0 3.08 x 105

5 Yes 100.1 4.62 x 105 9.3 189 0.046 0.029
10 Yes 97.9 4.05 x 105 8.1 173 0.053 0.031
20 Yes 98.0 3.35 x 105 8.4 172 0.052 0.030
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Figure 1. (a) Chemical structure of the unmodified acrylic-POSS used in the study. The 
hydrogenated form was the same but for the absence of any pendant carbon-carbon 
double bonds. (b) Comparison of clarity of two blends containing 20 vol% acrylic-POSS 
in PMMA. The clearer sample on the left contains the unmodified POSS pictured in 
Figure 1(a); the opaque sample on the right contains the hydrogenated form of the POSS 
in Figure 1(a) that contains no carbon-carbon double bonds. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) (b)
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Figure 2. DSC curves for (a) unmodified acrylic-POSS in PMMA and (b) hydrogenated 
acrylic-POSS in PMMA. The inset in (b) is a close-up of the low-T region of the 20 vol% 
blend, showing evidence of phase separation. 
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Figure 3. Glass transition temperatures measured in DSC for both types of acrylic-
POSS PMMA blends. The dotted line represents the prediction of the Fox Equation 
(Eqn. 1). 
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Figure 4. WAXD spectra for (a) unmodified acrylic-POSS in PMMA and (b) 
hydrogenated acrylic-POSS in PMMA.  
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Figure 5. Master curves at T0 = 170°C for (a) the storage modulus G′ and (b) the loss 
modulus G″ of unmodified acrylic-POSS PMMA blends. 
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Figure 6. Master curves at T0 = 170°C for (a) the storage modulus G′ and (b) the loss 
modulus G″ of hydrogenated acrylic-POSS PMMA blends. 
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Figure 7. Storage modulus curves for the unmodified acrylic-POSS PMMA blends 
after applying horizontal (aφ) and vertical (bφ) concentration-dependent shift factors to 
superpose all curves onto the storage modulus curve of the unfilled homopolymer. 
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Figure 8. A log-log plot of the horizontal shift factor { } 0
,

0 / unfilledNN GGb φφ =  against (1-

POSSφ ). The slope for conventional plasticizer-polymer systems typically lies between 2.0 
and 2.3. 
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Figure 9. Variation of the fractional free volume f0/B with increasing volume fraction of 
POSS nanoparticles at a reference temperature T0 = 170°C. Also shown is the fractional 
free volume fg/B at the glass transition temperature of each blend (see Table 1). The error 
bars for the unfilled PMMA and the φ = 0.05 blend in the unmodified acrylic-POSS 
system were determined by taking the standard deviation of three different samples. 
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Figure 10. DMA curves at a frequency of 1 Hz for (a) the storage modulus E′ and (b) the 
loss tangent tan δ for blends of unmodified acrylic-POSS and PMMA. 
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