25 research outputs found

    A Genome-Wide Association Study of Diabetic Kidney Disease in Subjects With Type 2 Diabetes

    Get PDF
    dentification of sequence variants robustly associated with predisposition to diabetic kidney disease (DKD) has the potential to provide insights into the pathophysiological mechanisms responsible. We conducted a genome-wide association study (GWAS) of DKD in type 2 diabetes (T2D) using eight complementary dichotomous and quantitative DKD phenotypes: the principal dichotomous analysis involved 5,717 T2D subjects, 3,345 with DKD. Promising association signals were evaluated in up to 26,827 subjects with T2D (12,710 with DKD). A combined T1D+T2D GWAS was performed using complementary data available for subjects with T1D, which, with replication samples, involved up to 40,340 subjects with diabetes (18,582 with DKD). Analysis of specific DKD phenotypes identified a novel signal near GABRR1 (rs9942471, P = 4.5 x 10(-8)) associated with microalbuminuria in European T2D case subjects. However, no replication of this signal was observed in Asian subjects with T2D or in the equivalent T1D analysis. There was only limited support, in this substantially enlarged analysis, for association at previously reported DKD signals, except for those at UMOD and PRKAG2, both associated with estimated glomerular filtration rate. We conclude that, despite challenges in addressing phenotypic heterogeneity, access to increased sample sizes will continue to provide more robust inference regarding risk variant discovery for DKD.Peer reviewe

    Trans-ancestry meta-analyses identify rare and common variants associated with blood pressure and hypertension

    Get PDF
    High blood pressure is a major risk factor for cardiovascular disease and premature death. However, there is limited knowledge on specific causal genes and pathways. To better understand the genetics of blood pressure, we genotyped 242,296 rare, low-frequency and common genetic variants in up to ~192,000 individuals, and used ~155,063 samples for independent replication. We identified 31 novel blood pressure or hypertension associated genetic regions in the general population, including three rare missense variants in RBM47, COL21A1 and RRAS with larger effects (>1.5mmHg/allele) than common variants. Multiple rare, nonsense and missense variant associations were found in A2ML1 and a low-frequency nonsense variant in ENPEP was identified. Our data extend the spectrum of allelic variation underlying blood pressure traits and hypertension, provide new insights into the pathophysiology of hypertension and indicate new targets for clinical intervention

    The genetic architecture of type 2 diabetes

    Get PDF
    The genetic architecture of common traits, including the number, frequency, and effect sizes of inherited variants that contribute to individual risk, has been long debated. Genome-wide association studies have identified scores of common variants associated with type 2 diabetes, but in aggregate, these explain only a fraction of heritability. To test the hypothesis that lower-frequency variants explain much of the remainder, the GoT2D and T2D-GENES consortia performed whole genome sequencing in 2,657 Europeans with and without diabetes, and exome sequencing in a total of 12,940 subjects from five ancestral groups. To increase statistical power, we expanded sample size via genotyping and imputation in a further 111,548 subjects. Variants associated with type 2 diabetes after sequencing were overwhelmingly common and most fell within regions previously identified by genome-wide association studies. Comprehensive enumeration of sequence variation is necessary to identify functional alleles that provide important clues to disease pathophysiology, but large-scale sequencing does not support a major role for lower-frequency variants in predisposition to type 2 diabetes

    First Genome-Wide Association Study of Latent Autoimmune Diabetes in Adults Reveals Novel Insights Linking Immune and Metabolic Diabetes

    Get PDF
    OBJECTIVELatent autoimmune diabetes in adults (LADA) shares clinical features with both type 1 and type 2 diabetes; however, there is ongoing debate regarding the precise definition of LADA. Understanding its genetic basis is one potential strategy to gain insight into appropriate classification of this diabetes subtype.RESEARCH DESIGN AND METHODSWe performed the first genome-wide association study of LADA in case subjects of European ancestry versus population control subjects (n = 2,634 vs. 5,947) and compared against both case subjects with type 1 diabetes (n = 2,454 vs. 968) and type 2 diabetes (n = 2,779 vs. 10,396).RESULTSThe leading genetic signals were principally shared with type 1 diabetes, although we observed positive genetic correlations genome-wide with both type 1 and type 2 diabetes. Additionally, we observed a novel independent signal at the known type 1 diabetes locus harboring PFKFB3, encoding a regulator of glycolysis and insulin signaling in type 2 diabetes and inflammation and autophagy in autoimmune disease, as well as an attenuation of key type 1-associated HLA haplotype frequencies in LADA, suggesting that these are factors that distinguish childhood-onset type 1 diabetes from adult autoimmune diabetes.CONCLUSIONSOur results support the need for further investigations of the genetic factors that distinguish forms of autoimmune diabetes as well as more precise classification strategies.Peer reviewe

    New Blood Pressure-Associated Loci Identified in Meta-Analyses of 475,000 Individuals

    Get PDF
    Background - Genome-wide association studies have recently identified >400 loci that harbor DNA sequence variants that influence blood pressure (BP). Our earlier studies identified and validated 56 single nucleotide variants (SNVs) associated with BP from meta-analyses of exome chip genotype data. An additional 100 variants yielded suggestive evidence of association. Methods and Results - Here, we augment the sample with 140 886 European individuals from the UK Biobank, in whom 77 of the 100 suggestive SNVs were available for association analysis with systolic BP or diastolic BP or pulse pressure. We performed 2 meta-analyses, one in individuals of European, South Asian, African, and Hispanic descent (pan-ancestry, ≈475 000), and the other in the subset of individuals of European descent (≈423 000). Twenty-one SNVs were genome-wide significant (P<5×10-8) for BP, of which 4 are new BP loci: rs9678851 (missense, SLC4A1AP), rs7437940 (AFAP1), rs13303 (missense, STAB1), and rs1055144 (7p15.2). In addition, we identified a potentially independent novel BP-associated SNV, rs3416322 (missense, SYNPO2L) at a known locus, uncorrelated with the previously reported SNVs. Two SNVs are associated with expression levels of nearby genes, and SNVs at 3 loci are associated with other traits. One SNV with a minor allele frequency <0.01, (rs3025380 at DBH) was genome-wide significant. Conclusions - We report 4 novel loci associated with BP regulation, and 1 independent variant at an established BP locus. This analysis highlights several candidate genes with variation that alter protein function or gene expression for potential follow-up

    A Low-Frequency Inactivating Akt2 Variant Enriched in the Finnish Population is Associated With Fasting Insulin Levels and Type 2 Diabetes Risk

    Get PDF
    To identify novel coding association signals and facilitate characterization of mechanisms influencing glycemic traits and type 2 diabetes risk, we analyzed 109,215 variants derived from exome array genotyping together with an additional 390,225 variants from exome sequence in up to 39,339 normoglycemic individuals from five ancestry groups. We identified a novel association between the coding variant (p.Pro50Thr) in AKT2 and fasting insulin, a gene in which rare fully penetrant mutations are causal for monogenic glycemic disorders. The low-frequency allele is associated with a 12% increase in fasting plasma insulin (FI) levels. This variant is present at 1.1% frequency in Finns but virtually absent in individuals from other ancestries. Carriers of the FI-increasing allele had increased 2-hour insulin values, decreased insulin sensitivity, and increased risk of type 2 diabetes (odds ratio=1.05). In cellular studies, the AKT2-Thr50 protein exhibited a partial loss of function. We extend the allelic spectrum for coding variants in AKT2 associated with disorders of glucose homeostasis and demonstrate bidirectional effects of variants within the pleckstrin homology domain of AKT2.Academy of Finland (129293, 128315, 129330, 131593, 139635, 139635, 121584, 126925, 124282, 129378, 258753); Action on Hearing Loss (G51); Ahokas Foundation; American Diabetes Association (#7-12-MN-02); Atlantic Canada Opportunities Agency; Augustinus foundation; Becket foundation; Benzon Foundation; Biomedical Research Council; British Heart Foundation (SP/04/002); Canada Foundation for Innovation; Commission of the European Communities, Directorate C-Public Health (2004310); Copenhagen County; Danish Centre for Evaluation and Health Technology Assessment; Danish Council for Independent Research; Danish Heart Foundation (07-10-R61-A1754-B838-22392F); Danish Medical Research Council; Danish Pharmaceutical Association; Emil Aaltonen Foundation; European Research Council Advanced Research Grant; European Union FP7 (EpiMigrant, 279143; FP7/2007-2013; 259749); Finland's Slottery Machine Association; Finnish Cultural Foundation; Finnish Diabetes Research Foundation; Finnish Foundation for Cardiovascular Research; Finnish Foundation of Cardiovascular Research; Finnish Medical Society; Finnish National Public Health Institute; Finska Läkaresällskapet; Folkhälsan Research Foundation; Foundation for Life and Health in Finland; German Center for Diabetes Research (DZD) ; German Federal Ministry of Education and Research; Health Care Centers in Vasa, Närpes and Korsholm; Health Insurance Foundation (2012B233) ; Helsinki University Central Hospital Research Foundation; Hospital districts of Pirkanmaa, Southern Ostrobothnia, North Ostrobothnia, Central Finland, and Northern Savo; Ib Henriksen foundation; Juho Vainio Foundation; Korea Centers for Disease Control and Prevention (4845–301); Korea National Institute of Health (2012-N73002-00); Li Ka Shing Foundation; Liv och Hälsa; Lundbeck Foundation; Marie-Curie Fellowship (PIEF-GA-2012-329156); Medical Research Council (G0601261, G0900747-91070, G0601966, G0700931); Ministry of Education in Finland; Ministry of Social Affairs and Health in Finland; MRC-PHE Centre for Environment and Health;Municipal Heath Care Center and Hospital in Jakobstad; Närpes Health Care Foundation; National Institute for Health Research (RP-PG-0407-10371); National Institutes of Health (U01 DK085526, U01 DK085501, U01 DK085524, U01 DK085545, U01 DK085584, U01 DK088389, RC2-DK088389, DK085545, DK098032, HHSN268201300046C, HHSN268201300047C, HHSN268201300048C, HHSN268201300049C, HHSN, R01MH107666 and K12CA139160268201300050C, U01 DK062370, R01 DK066358, U01DK085501, R01HL102830, R01DK073541, PO1AG027734, R01AG046949, 1R01AG042188, P30AG038072, R01 MH101820, R01MH090937, P30DK020595, R01 DK078616, NIDDK K24 DK080140, 1RC2DK088389, T32GM007753); National Medical Research Council; National Research Foundation of Korea (NRF-2012R1A2A1A03006155); Nordic Center of Excellence in Disease Genetics; Novo Nordisk; Ollqvist Foundation; OrionFarmos Research Foundation; Paavo Nurmi Foundation; Perklén Foundation; Samfundet Folkhälsan; Signe and Ane Gyllenberg Foundation; Sigrid Juselius Foundation; Social Insurance Institution of Finland; South East Norway Health Authority (2011060); Swedish Cultural Foundation in Finland; Swedish Heart-Lung Foundation; Swedish Research Council; Swedish Research Council (Linné and Strategic Research Grant); The American Federation for Aging Research; The Einstein Glenn Center; The European Commission (HEALTH-F4-2007-201413); The Finnish Diabetes Association; The Folkhälsan Research Foundation; The Påhlssons Foundation; The provinces of Newfoundland and Labrador, Nova Scotia, and New Brunswick; The Sigrid Juselius Foundation; The Skåne Regional Health Authority; The Swedish Heart-Lung Foundation; Timber Merchant Vilhelm Bang’s Foundation; Turku University Foundation; Uppsala University; Wellcome Trust (064890, 083948, 085475, 086596, 090367, 090532, 092447, 095101/Z/10/Z, 200837/Z/16/Z, 095552, 098017, 098381, 098051, 084723, 072960/2/ 03/2, 086113/Z/08/Z, WT098017, WT064890, WT090532, WT098017, 098051, WT086596/Z/08/A and 086596/Z/08/Z). Detailed acknowledgment of funding sources is provided in the Additional Acknowledgements section of the Supplementary Materials
    corecore