527 research outputs found

    Morphological features of the testis of freshwater blood flukes of the genus Sanguinicola Plehn, 1905, with consideration of the testicular patterns in the Aporocotylidae

    Get PDF
    This is the first detailed study assessing the morphological features of the testis and testicular sperm of members of the freshwater blood flukes Sanguinicola sp. from Leuciscus idus (Cyprinidae) and for S. volgensis from Pelecus cultratus (Cyprinidae), and the marine blood fluke Aporocotyle simplex from Hippoglossoides platessoides (Pleuronectidae). The present study reports a unique feature in the distribution of germinal cellular components in freshwater Sanguinicola sp., showing the presence of the individual spermatocytes or their clusters in the testicular lobes, and the gathering of spermatid rosettes and spermatozoa within middle testicular lumen, which extends along the entire length of the testis. In contrast, each testis of marine A. simplex contains the usual mixed distribution of germ cells at various stages of development. The first TEM data on spermatozoon character of studied species has shown, unusual for digenean sperm structure, the absence of cortical microtubules in sperm principal region. Moreover, a variation in axoneme patterns is revealed in the studied aporocotylids, belonging to the different aporocotylid lineages a 9 + 0 axonemal type observed for freshwater teleost-infective species, Sanguinicola sp. and S. volgensis, and a 9 + ‘1’ axonemal type revealed in spermatozoa of marine teleost-infective species A. simplex. The results discussed with the published data on the digenean sperm structure and the testicular patterns in the Aporocotylidae likely represent additional characteristics supporting the divergent evolutionary lineages of freshwater and marine aporocotylids. We anticipate future morphological studies of the sperm structure in aporocotylids of three lineages for an understanding of their phylogenetic relationships

    Sap Concentrations in Halophytes and Some Other Plants

    Full text link

    Reduction of aerobic and lactic acid bacteria in dairy desludge using an integrated compressed CO2 and ultrasonic process

    Get PDF
    International audienceAbstractCurrent treatment routes are not suitable to reduce and stabilise bacterial content in some dairy process streams such as separator and bactofuge desludges which currently present a major emission problem faced by dairy producers. In this study, a novel method for the processing of desludge was developed. The new method, elevated pressure sonication (EPS), uses a combination of low frequency ultrasound (20 kHz) and elevated CO2 pressure (50 to 100 bar). Process conditions (pressure, sonicator power, processing time) were optimised for batch and continuous EPS processes to reduce viable numbers of aerobic and lactic acid bacteria in bactofuge desludge by ≥3-log fold. Coagulation of proteins present in the desludge also occurred, causing separation of solid (curd) and liquid (whey) fractions. The proposed process offers a 10-fold reduction in energy compared to high temperature short time (HTST) treatment of milk

    Structure of metal site in azurin, met 121 mutants of azurin, and stellacyanin investigated by 111m Cd Perturbed Angular Correlation (PAC)

    Get PDF
    The geometries of the metal sites in cadmium-substituted azurins have been investigated by Cd-111m perturbed angular correlation (PAC), The study includes wild type azurin as well as Met(121) mutants of azurin, where methionine has been substituted by Ala, Asn, Asp, Gin, Glu, and Leu.The nuclear quadrupole interaction of wild type azurin analyzed in the angular overlap model is well described as coordination of His(46), His(117), and Cys(112) and cannot be described by coordination of Met(121) and/or Gly(45).For most of the mutants, there exist two coordination geometries of the cadmium ion, With the exception of the Gau and Asp mutants, one of the conformations is similar to the wild type conformation. The other coordination geometries are either best described by a coordinating water molecule close to the original methionine position or by coordination by the substituting amino acid, These experiments show that even though the methionine does not coordinate it plays an important role for the geometry of the metal site.The nuclear quadrupole interaction of stellacyanin was also measured, The value resembles the most prominent nuclear quadrupole interaction of the Met(121) --> Gin mutant of Alcaligenes denitrificans azurin, indicating that the structures of the two metal sites are similar.Macromolecular Biochemistr

    The allometry of the smallest: superlinear scaling of microbial metabolic rates in the Atlantic Ocean

    Get PDF
    Prokaryotic planktonic organisms are small in size but largely relevant in marine biogeochemical cycles. Due to their reduced size range (0.2 to 1 mu m in diameter), the effects of cell size on their metabolism have been hardly considered and are usually not examined in field studies. Here, we show the results of size-fractionated experiments of marine microbial respiration rate along a latitudinal transect in the Atlantic Ocean. The scaling exponents obtained from the power relationship between respiration rate and size were significantly higher than one. This superlinearity was ubiquitous across the latitudinal transect but its value was not universal revealing a strong albeit heterogeneous effect of cell size on microbial metabolism. Our results suggest that the latitudinal differences observed are the combined result of changes in cell size and composition between functional groups within prokaryotes. Communities where the largest size fraction was dominated by prokaryotic cyanobacteria, especially Prochlorococcus, have lower allometric exponents. We hypothesize that these larger, more complex prokaryotes fall close to the evolutionary transition between prokaryotes and protists, in a range where surface area starts to constrain metabolism and, hence, are expected to follow a scaling closer to linearity.VersiĂłn del editor8,951

    Proxy Measures of Fitness Suggest Coastal Fish Farms Can Act as Population Sources and Not Ecological Traps for Wild Gadoid Fish

    Get PDF
    Background: Ecological traps form when artificial structures are added to natural habitats and induce mismatches between habitat preferences and fitness consequences. Their existence in terrestrial systems has been documented, yet little evidence suggests they occur in marine environments. Coastal fish farms are widespread artificial structures in coastal ecosystems and are highly attractive to wild fish. Methodology/Principal Findings: To investigate if coastal salmon farms act as ecological traps for wild Atlantic cod (Gadus morhua) and saithe (Pollachius virens), we compared proxy measures of fitness between farm-associated fish and control fish caught distant from farms in nine locations throughout coastal Norway, the largest coastal fish farming industry in the world. Farms modified wild fish diets in both quality and quantity, thereby providing farm-associated wild fish with a strong trophic subsidy. This translated to greater somatic (saithe: 1.06–1.12 times; cod: 1.06–1.11 times) and liver condition indices (saithe: 1.4–1.8 times; cod: 2.0–2.8 times) than control fish caught distant from farms. Parasite loads of farm-associated wild fish were modified from control fish, with increased external and decreased internal parasites, however the strong effect of the trophic subsidy overrode any effects of altered loads upon condition. Conclusions and Significance: Proxy measures of fitness provided no evidence that salmon farms function as ecological traps for wild fish. We suggest fish farms may act as population sources for wild fish, provided they are protected from fishing while resident at farms to allow their increased condition to manifest as greater reproductive output.Funding was provided by the Norwegian Research Council Havet og kysten program to the CoastACE project (no: 173384)

    Markers of cerebral damage during delirium in elderly patients with hip fracture

    Get PDF
    BACKGROUND: S100B protein and Neuron Specific Enolase (NSE) can increase due to brain cell damage and/or increased permeability of the blood-brain-barrier. Elevation of these proteins has been shown after various neurological diseases with cognitive dysfunction. Delirium is characterized by temporal cognitive deficits and is an important risk factor for dementia. The aim of this study was to compare the level of S100B and NSE of patients before, during and after delirium with patients without delirium and investigate the possible associations with different subtypes of delirium. METHODS: The study population were patients aged 65 years or more acutely admitted after hip fracture. Delirium was diagnosed by the Confusion Assessment Method and the subtype by Delirium Symptom interview. In maximal four serum samples per patient S100B and NSE levels were determined by electrochemiluminescence immunoassay. RESULTS: Of 120 included patients with mean age 83.9 years, 62 experienced delirium. Delirious patients had more frequently pre-existing cognitive impairment (67% vs. 18%, p<0.001). Comparing the first samples during delirium to samples of non-delirious patients, a difference was observed in S100B (median 0.16 versus 0.10 ug/L, p=<0.001), but not in NSE (median 11.7 versus 11.7 ng/L, p=0.97). Delirious state (before, during, after) (p<0.001), day of blood withdrawal (p<0.001), pre- or postoperative status (p=0.001) and type of fracture (p=0.036) were all associated with S100B level. The highest S100B levels were found 'during' delirium. S100B levels 'before' and 'after' delirium were still higher than those from 'non-delirious' patients. No significant difference in S100B (p=0.43) or NSE levels (p=0.41) was seen between the hyperactive, hypoactive and mixed subtype of delirium. CONCLUSIONS: Delirium was associated with increased level of S100B which could indicate cerebral damage either due to delirium or leading to delirium. The possible association between higher levels of S100B during delirium and the higher risk of developing dementia after delirium is an interesting field for future research. More studies are needed to elucidate the role of S100B proteins in the pathophysiological pathway leading to delirium and to investigate its possibility as biomarker for deliriu
    • …
    corecore