1,836 research outputs found

    Atmospheric Neutrino Oscillations and New Physics

    Get PDF
    We study the robustness of the determination of the neutrino masses and mixing from the analysis of atmospheric and K2K data under the presence of different forms of phenomenologically allowed new physics in the nu_mu--nu_tau sector. We focus on vector and tensor-like new physics interactions which allow us to treat, in a model independent way, effects due to the violation of the equivalence principle, violations of the Lorentz invariance both CPT conserving and CPT violating, non-universal couplings to a torsion field and non-standard neutrino interactions with matter. We perform a global analysis of the full atmospheric data from SKI together with long baseline K2K data in the presence of nu_mu -> nu_tau transitions driven by neutrino masses and mixing together with sub-dominant effects due to these forms of new physics. We show that within the present degree of experimental precision, the extracted values of masses and mixing are robust under those effects and we derive the upper bounds on the possible strength of these new interactions in the nu_mu--nu_tau sector.Comment: 22 pages, LaTeX file using RevTEX4, 5 figures and 4 tables include

    Probing neutrino non-standard interactions with atmospheric neutrino data

    Get PDF
    We have reconsidered the atmospheric neutrino anomaly in light of the laetst data from Super-Kamiokande contained events and from Super-Kamiokande and MACRO up-going muons. We have reanalysed the proposed solution to the atmospheric neutrino anomaly in terms of non-standard neutrino-matter interactions (NSI) as well as the standard nu_mu -> nu_tau oscillations (OSC). Our statistical analysis shows that a pure NSI mechanism is now ruled out at 99%, while the standard nu_mu -> nu_tau OSC mechanism provides a quite remarkably good description of the anomaly. We therefore study an extended mechanism of neutrino propagation which combines both oscillation and non-standard neutrino-matter interactions, in order to derive limits on flavour-changing (FC) and non-universal (NU) neutrino interactions. We obtain that the off-diagonal flavour-changing neutrino parameter epsilon and the diagonal non-universality neutrino parameter epsilon' are confined to -0.03 < epsilon < 0.02 and |epsilon'| < 0.05 at 99.73% CL. These limits are model independent and they are obtained from pure neutrino-physics processes. The stability of the neutrino oscillation solution to the atmospheric neutrino anomaly against the presence of non-standard neutrino interactions establishes the robustness of the near-maximal atmospheric mixing and massive-neutrino hypothesis. The best agreement with the data is obtained for Delta_m^2 = 2.3*10^{-3} eV^2, sin^2(2*theta) = 1, epsilon = 6.7*10^{-3} and epsilon' = 1.1*10^{-3}, although the chi^2 function is quite flat in the epsilon and epsilon' directions for epsilon, epsilon' -> 0.Comment: 26 pages, LaTeX file using REVTeX4, 1 table and 12 figures included. Added a revised analysis which takes into account the new 1489-day Super-Kamiokande and final MACRO data. The bound on NSI parameters is considerably improve

    Testing matter effects in propagation of atmospheric and long-baseline neutrinos

    Full text link
    We quantify our current knowledge of the size and flavor structure of the matter effects in the evolution of atmospheric and long-baseline neutrinos based solely on the analysis of the corresponding neutrino data. To this aim we generalize the matter potential of the Standard Model by rescaling its strength, rotating it away from the e-e sector, and rephasing it with respect to the vacuum term. This phenomenological parametrization can be easily translated in terms of non-standard neutrino interactions in matter. We show that in the most general case, the strength of the potential cannot be determined solely by atmospheric and long-baseline data. However its flavor composition is very much constrained and the present determination of the neutrino masses and mixing is robust under its presence. We also present an update of the constraints arising from this analysis in the particular case in which no potential is present in the e-mu and e-tau sectors. Finally we quantify to what degree in this scenario it is possible to alleviate the tension between the oscillation results for neutrinos and antineutrinos in the MINOS experiment and show the relevance of the high energy part of the spectrum measured at MINOS.Comment: PDFLaTeX file using JHEP3 class, 25 pages, 7 figures included. Accepted for publication in JHE

    Global Analysis of the post-SNO Solar Neutrino Data for Standard and Non-Standard Oscillation Mechanisms

    Full text link
    What can we learn from solar neutrino observations? Is there any solution to the solar neutrino anomaly which is favored by the present experimental panorama? After SNO results, is it possible to affirm that neutrinos have mass? In order to answer such questions we analyze the current available data from the solar neutrino experiments, including the recent SNO result, in view of many acceptable solutions to the solar neutrino problem based on different conversion mechanisms, for the first time, using the same statistical procedure. This allows us to do a direct comparison of the goodness of the fit among different solutions, from which we can discuss and conclude on the current status of each proposed dynamical mechanism. These solutions are based on different assumptions: (a) neutrino mass and mixing, (b) non-vanishing neutrino magnetic moment, (c) the existence of non-standard flavor-changing and non-universal neutrino interactions and (d) the tiny violation of the equivalence principle. We investigate the quality of the fit provided by each one of these solutions not only to the total rate measured by all the solar neutrino experiments but also to the recoil electron energy spectrum measured at different zenith angles by the Super-Kamiokande collaboration. We conclude that several non-standard neutrino flavor conversion mechanisms provide a very good fit to the experimental data which is comparable with (or even slightly better than) the most famous solution to the solar neutrino anomaly based on the neutrino oscillation induced by mass.Comment: Minor changes in the solar magnetic field profile used, and some refferences added. Final version to appear in PR

    Effects of new physics in neutrino oscillations in matter

    Get PDF
    A new flavor changing electron neutrino interaction with matter would always dominate the nu_e oscillation probability at sufficiently high neutrino energies. Being suppressed by theta_{13}, the energy scale at which the new effect starts to be relevant may be within the reach of realistic experiments, where the peculiar dependence of the signal with energy could give rise to a clear signature in the nu_e --> nu_tau channel. The latter could be observed by means of a coarse large magnetized detector by exploiting tau --> mu decays. We discuss the possibility of identifying or constraining such effects with a high energy neutrino factory. We also comment on the model independent limits on them.Comment: 11 pages, 5 figure

    Confusing non-standard neutrino interactions with oscillations at a neutrino factory

    Get PDF
    Most neutrino mass theories contain non-standard interactions (NSI) of neutrinos which can be either non-universal (NU) or flavor-changing (FC). We study the impact of such interactions on the determination of neutrino mixing parameters at a neutrino factory using the so-called ``golden channels'' \pnu{e}\to\pnu{\mu} for the measurement of \theta_{13}. We show that a certain combination of FC interactions in neutrino source and earth matter can give exactly the same signal as oscillations arising due to \theta_{13}. This implies that information about \theta_{13} can only be obtained if bounds on NSI are available. Taking into account the existing bounds on FC interactions, this leads to a drastic loss in sensitivity in \theta_{13}, at least two orders of magnitude. A near detector at a neutrino factory offers the possibility to obtain stringent bounds on some NSI parameters. Such near site detector constitutes an essential ingredient of a neutrino factory and a necessary step towards the determination of \theta_{13} and subsequent study of leptonic CP violation.Comment: 23 pages, 5 figures, improved version, accepted for publication in Phs. Rev. D, references adde

    Reexamining nonstandard interaction effects on supernova neutrino flavor oscillations

    Get PDF
    Several extensions of the standard electroweak model allow new four-fermion interactions (nu_a nu_b * ff) with strength eps_ab*G_F, where (a,b) are flavor indices. We revisit their effects on flavor oscillations of massive (anti)neutrinos in supernovae, in order to achieve, in the region above the protoneutron star, an analytical treatment valid for generic values of the neutrino mixing angles (omega,phi,psi)=(theta_12,theta_13,theta_23). Assuming that eps_ab<<1, we find that the leading effects on the flavor transitions occurring at high (H) and low (L) density along the supernova matter profile can be simply embedded through the replacements phi-->phi+eps_H and omega-->omega+eps_L, respectively, where eps_H and eps_L are specific linear combinations of the eps_ab's. Similar replacements hold for eventual oscillations in the Earth matter. From a phenomenological point of view, the most relevant consequence is a possible uncontrolled bias (phi-->phi+eps_H) in the value of the mixing angle phi inferred by inversion of supernova neutrino data. Such a drawback, however, does not preclude the discrimination of the neutrino mass spectrum hierarchy (direct or inverse) through supernova neutrino oscillations.Comment: Text clarified, one figure added. To appear in PR

    Non-standard interactions versus non-unitary lepton flavor mixing at a neutrino factory

    Full text link
    The impact of heavy mediators on neutrino oscillations is typically described by non-standard four-fermion interactions (NSIs) or non-unitarity (NU). We focus on leptonic dimension-six effective operators which do not produce charged lepton flavor violation. These operators lead to particular correlations among neutrino production, propagation, and detection non-standard effects. We point out that these NSIs and NU phenomenologically lead, in fact, to very similar effects for a neutrino factory, for completely different fundamental reasons. We discuss how the parameters and probabilities are related in this case, and compare the sensitivities. We demonstrate that the NSIs and NU can, in principle, be distinguished for large enough effects at the example of non-standard effects in the ÎĽ\mu-Ď„\tau-sector, which basically corresponds to differentiating between scalars and fermions as heavy mediators as leading order effect. However, we find that a near detector at superbeams could provide very synergistic information, since the correlation between source and matter NSIs is broken for hadronic neutrino production, while NU is a fundamental effect present at any experiment.Comment: 32 pages, 5 figures. Final version published in JHEP. v3: Typo in Eq. (27) correcte

    Solar neutrinos: global analysis with day and night spectra from SNO

    Full text link
    We perform global analysis of the solar neutrino data including the day and night spectra of events at SNO. In the context of two active neutrino mixing, the best fit of the data is provided by the LMA MSW solution with Delta m^2 = 6.15 10^{-5} eV^2, tan^2\theta = 0.41, f_B = 1.05, where f_B is the boron neutrino flux in units of the corresponding flux in the Standard Solar Model (SSM). At 3 sigma level we find the following upper bounds: tan^2\theta < 0.84 and Delta m^2 < 3.6 10^{-4} eV^2. From 1 sigma-interval we expect the day-night asymmetries of the charged current and electron scattering events to be: A_{DN}^{CC} = 3.9 +3.6-2.9 and A_{DN}^{ES} = 2.1 +2.1-1.4. The only other solution which appears at 3 sigma-level is the VAC solution with Delta m^2 = 4.5 10^{-10} eV^2, tan^2\theta = 2.1 and f_B=0.75. The best fit point in the LOW region, with Delta m^2 = 0.93 10^{-7} eV^2 and tan^2\theta = 0.64, is accepted at 99.95% (3.5 sigma) C.L. . The least chi^2 point from the SMA solution region, with Delta m^2 = 4.6 10^{-6} eV^2 and tan^2\theta = 5 10^{-4}, could be accepted at 5.5 sigma-level only. In the three neutrino context the influence of theta_{13} is studied. We find that with increase of theta_{13} the LMA best fit point shifts to larger Delta m^2, mixing angle is practically unchanged, and the quality of the fit becomes worse. The fits of LOW and SMA slightly improve. Predictions for KamLAND experiment (total rates, spectrum distortion) have been calculated.Comment: Typos corrected, reference adde

    Quasi-energy-independent solar neutrino transitions

    Get PDF
    Current solar, atmospheric, and reactor neutrino data still allow oscillation scenarios where the squared mass differences are all close to 10^-3 eV^2, rather than being hierarchically separated. For solar neutrinos, this situation (realized in the upper part of the so-called large-mixing angle solution) implies adiabatic transitions which depend weakly on the neutrino energy and on the matter density, as well as on the ``atmospheric'' squared mass difference. In such a regime of ``quasi-energy-independent'' (QEI) transitions, intermediate between the more familiar ``Mikheyev-Smirnov-Wolfenstein'' (MSW) and energy-independent (EI) regimes, we first perform analytical calculations of the solar nu_e survival probability at first order in the matter density, beyond the usual hierarchical approximations. We then provide accurate, generalized expressions for the solar neutrino mixing angles in matter, which reduce to those valid in the MSW, QEI and EI regimes in appropriate limits. Finally, a representative QEI scenario is discussed in some detail.Comment: Title changed; text and acronyms revised; results unchanged. To appear in PR
    • …
    corecore