What can we learn from solar neutrino observations? Is there any solution to
the solar neutrino anomaly which is favored by the present experimental
panorama? After SNO results, is it possible to affirm that neutrinos have mass?
In order to answer such questions we analyze the current available data from
the solar neutrino experiments, including the recent SNO result, in view of
many acceptable solutions to the solar neutrino problem based on different
conversion mechanisms, for the first time, using the same statistical
procedure. This allows us to do a direct comparison of the goodness of the fit
among different solutions, from which we can discuss and conclude on the
current status of each proposed dynamical mechanism. These solutions are based
on different assumptions: (a) neutrino mass and mixing, (b) non-vanishing
neutrino magnetic moment, (c) the existence of non-standard flavor-changing and
non-universal neutrino interactions and (d) the tiny violation of the
equivalence principle. We investigate the quality of the fit provided by each
one of these solutions not only to the total rate measured by all the solar
neutrino experiments but also to the recoil electron energy spectrum measured
at different zenith angles by the Super-Kamiokande collaboration. We conclude
that several non-standard neutrino flavor conversion mechanisms provide a very
good fit to the experimental data which is comparable with (or even slightly
better than) the most famous solution to the solar neutrino anomaly based on
the neutrino oscillation induced by mass.Comment: Minor changes in the solar magnetic field profile used, and some
refferences added. Final version to appear in PR