189 research outputs found

    Canopy-scale biophysical controls of transpiration and evaporation in the Amazon Basin.

    Get PDF
    Canopy and aerodynamic conductances (gC and gA) are two of the key land surface biophysical variables that control the land surface response of land surface schemes in climate models. Their representation is crucial for predicting transpiration (λET) and evaporation (λEE) flux components of the terrestrial latent heat flux (λE), which has important implications for global climate change and water resource management. By physical integration of radiometric surface temperature (TR) into an integrated framework of the Penman?Monteith and Shuttleworth?Wallace models, we present a novel approach to directly quantify the canopy-scale biophysical controls on λET and λEE over multiple plant functional types (PFTs) in the Amazon Basin. Combining data from six LBA (Large-scale Biosphere-Atmosphere Experiment in Amazonia) eddy covariance tower sites and a TR-driven physically based modeling approach, we identified the canopy-scale feedback-response mechanism between gC, λET, and atmospheric vapor pressure deficit (DA), without using any leaf-scale empirical parameterizations for the modeling. The TR-based model shows minor biophysical control on λET during the wet (rainy) seasons where λET becomes predominantly radiation driven and net radiation (RN) determines 75 to 80 % of the variances of λET. However, biophysical control on λET is dramatically increased during the dry seasons, and particularly the 2005 drought year, explaining 50 to 65 % of the variances of λET, and indicates λET to be substantially soil moisture driven during the rainfall deficit phase. Despite substantial differences in gA between forests and pastures, very similar canopy?atmosphere "coupling" was found in these two biomes due to soil moisture-induced decrease in gC in the pasture. This revealed the pragmatic aspect of the TR-driven model behavior that exhibits a high sensitivity of gC to per unit change in wetness as opposed to gA that is marginally sensitive to surface wetness variability. Our results reveal the occurrence of a significant hysteresis between λET and gC during the dry season for the pasture sites, which is attributed to relatively low soil water availability as compared to the rainforests, likely due to differences in rooting depth between the two systems. Evaporation was significantly influenced by gA for all the PFTs and across all wetness conditions. Our analytical framework logically captures the responses of gC and gA to changes in atmospheric radiation, DA, and surface radiometric temperature, and thus appears to be promising for the improvement of existing land?surface?atmosphere exchange parameterizations across a range of spatial scales

    Canopy-scale biophysical controls on transpiration and evaporation in the Amazon Basin

    Get PDF
    Canopy and aerodynamic conductances (gC and gA) are two of the key land surface biophysical variables that control the land surface response of land surface schemes in climate models. Their representation is crucial for predicting transpiration (?ET) and evaporation (?EE) flux components of the terrestrial latent heat flux (?E), which has important implications for global climate change and water resource management. By physical integration of radiometric surface temperature (TR) into an integrated framework of the Penman?Monteith and Shuttleworth?Wallace models, we present a novel approach to directly quantify the canopy-scale biophysical controls on ?ET and ?EE over multiple plant functional types (PFTs) in the Amazon Basin. Combining data from six LBA (Large-scale Biosphere-Atmosphere Experiment in Amazonia) eddy covariance tower sites and a TR-driven physically based modeling approach, we identified the canopy-scale feedback-response mechanism between gC, ?ET, and atmospheric vapor pressure deficit (DA), without using any leaf-scale empirical parameterizations for the modeling. The TR-based model shows minor biophysical control on ?ET during the wet (rainy) seasons where ?ET becomes predominantly radiation driven and net radiation (RN) determines 75 to 80?% of the variances of ?ET. However, biophysical control on ?ET is dramatically increased during the dry seasons, and particularly the 2005 drought year, explaining 50 to 65?% of the variances of ?ET, and indicates ?ET to be substantially soil moisture driven during the rainfall deficit phase. Despite substantial differences in gA between forests and pastures, very similar canopy?atmosphere "coupling" was found in these two biomes due to soil moisture-induced decrease in gC in the pasture. This revealed the pragmatic aspect of the TR-driven model behavior that exhibits a high sensitivity of gC to per unit change in wetness as opposed to gA that is marginally sensitive to surface wetness variability. Our results reveal the occurrence of a significant hysteresis between ?ET and gC during the dry season for the pasture sites, which is attributed to relatively low soil water availability as compared to the rainforests, likely due to differences in rooting depth between the two systems. Evaporation was significantly influenced by gA for all the PFTs and across all wetness conditions. Our analytical framework logically captures the responses of gC and gA to changes in atmospheric radiation, DA, and surface radiometric temperature, and thus appears to be promising for the improvement of existing land?surface?atmosphere exchange parameterizations across a range of spatial scales

    The Effect of Oxidant and the Non-Oxidant Alteration of Cellular Thiol Concentration on the Formation of Protein Mixed-Disulfides in HEK 293 Cells

    Get PDF
    Cellular molecules possess various mechanisms in responding to oxidant stress. In terms of protein responses, protein S-glutathionylation is a unique post-translational modification of protein reactive cysteines forming disulfides with glutathione molecules. This modification has been proposed to play roles in antioxidant, regulatory and signaling in cells under oxidant stress. Recently, the increased level of protein S-glutathionylation has been linked with the development of diseases. In this report, specific S-glutathionylated proteins were demonstrated in human embryonic kidney 293 cells treated with two different oxidative reagents: diamide and hydrogen peroxide. Diamide is a chemical oxidizing agent whereas hydrogen peroxide is a physiological oxidant. Under the experimental conditions, these two oxidants decreased glutathione concentration without toxicity. S-glutathionylated proteins were detected by immunoblotting and glutathione concentrations were determined by high performance liquid chromatography. We further show the effect of alteration of the cellular thiol pool on the amount of protein S-glutathionylation in oxidant-treated cells. Cellular thiol concentrations were altered either by a specific way using buthionine sulfoximine, a specific inhibitor of glutathione biosynthesis or by a non-specific way, incubating cells in cystine-methionine deficient media. Cells only treated with either buthionine sulfoximine or cystine-methionine deficient media did not induce protein S-glutathionylation, even though both conditions decreased 65% of cellular glutathione. Moreover, the amount of protein S-glutathionylation under both conditions in the presence of oxidants was not altered when compared to the amount observed in regular media with oxidants present. Protein S-glutathionylation is a dynamic reaction which depends on the rate of adding and removing glutathione. Phenylarsine oxide, which specifically forms a covalent adduct with vicinal thiols, was used to determine the possible role of vicinal thiols in the amount of glutathionylation. Our data shows phenylarsine oxide did not change glutathione concentrations, but it did enhance the amount of glutathionylation in oxidant-treated cells

    Quantifying local rainfall dynamics and uncertain boundary conditions into a nested regional-local flood modeling system

    Get PDF
    [Abstract:] Inflow discharge and outflow stage estimates for hydraulic flood models are generally derived from river gauge data. Uncertainties in the measured inflow data and the neglect of rainfall-runoff contributions to the modeled domain downstream of the gauging locations can have a significant impact on these estimated “whole reach” inflows and consequently on flood predictions. In this study, a method to incorporate rating curve uncertainty and local rainfall-runoff dynamics into the predictions of a reach-scale flood model is proposed. The methodology is applied to the July 2007 floods of the River Severn in UK. Discharge uncertainty bounds are generated applying a nonparametric local weighted regression approach to stage-discharge measurements for two gauging stations. Measured rainfall downstream from these locations is used as input to a series of subcatchment regional hydrological model to quantify additional local inflows along the main channel. A regional simplified-physics hydraulic model is then applied to combine these contributions and generate an ensemble of discharge and water elevation time series at the boundaries of a local-scale high complexity hydraulic model. Finally, the effect of these rainfall dynamics and uncertain boundary conditions are evaluated on the local-scale model. Accurate prediction of the flood peak was obtained with the proposed method, which was only possible by resolving the additional complexity of the extreme rainfall contributions over the modeled area. The findings highlight the importance of estimating boundary condition uncertainty and local rainfall contributions for accurate prediction of river flows and inundation at regional scales.María Bermúdez gratefully acknowledges financial support from the Spanish Regional Government of Galicia (postdoctoral grant reference ED481B 2014/156-0). Gemma Coxon was supported by NERC MaRIUS: Managing the Risks, Impacts and Uncertainties of droughts and water Scarcity, grant NE/L010399/1. Jim Freer and Paul Bates by NERC Susceptibility of catchments to INTense RAinfall and flooding, grant NE/K00882X/1. A free version of the model LISFLOOD-FP is available for download at www.bristol.ac.uk/geography/research/hydrology/models/lisflood/. A free version of the model Iber is available for download at www.iberaula.es. The river cross-section data, the LiDAR digital elevation model and the gauging station rainfall, stage, flow and rating curve data of the presented case study are freely available from the Environment Agency ([email protected])Xunta de Galicia; ED481B 2014/156-0Inglaterra. University of Bristol; NE/L010399/1Inglaterra. University of Bristol; NE/K00882X/

    Subcellular distribution of glutathione and its dynamic changes under oxidative stress in the yeast Saccharomyces cerevisiae

    Get PDF
    Glutathione is an important antioxidant in most prokaryotes and eukaryotes. It detoxifies reactive oxygen species and is also involved in the modulation of gene expression, in redox signaling, and in the regulation of enzymatic activities. In this study, the subcellular distribution of glutathione was studied in Saccharomyces cerevisiae by quantitative immunoelectron microscopy. Highest glutathione contents were detected in mitochondria and subsequently in the cytosol, nuclei, cell walls, and vacuoles. The induction of oxidative stress by hydrogen peroxide (H2O2) led to changes in glutathione-specific labeling. Three cell types were identified. Cell types I and II contained more glutathione than control cells. Cell type II differed from cell type I in showing a decrease in glutathione-specific labeling solely in mitochondria. Cell type III contained much less glutathione contents than the control and showed the strongest decrease in mitochondria, suggesting that high and stable levels of glutathione in mitochondria are important for the protection and survival of the cells during oxidative stress. Additionally, large amounts of glutathione were relocated and stored in vacuoles in cell type III, suggesting the importance of the sequestration of glutathione in vacuoles under oxidative stress

    Subclinical Ochronosis Features In Alkaptonuria: A Cross-Sectional Study

    Get PDF
    Background Alkaptonuria (AKU) is present from birth, yet clinical effects are considered to appear later in life. Morbidity of AKU, considered irreversible, is secondary to ochronosis. Age of ochronosis onset is not clearly known. Nitisinone profoundly lowers homogentisic acid (HGA), the metabolic defect in AKU. Nitisinone also arrests ochronosis and slows progression of AKU. However, tyrosinaemia post-nitisinone has been associated with corneal keratopathy, rash and cognitive impairment in HT 1. The optimal time to start nitisinone in AKU is unknown. Methods In an open, cross-sectional, single-site study, 32 patients with AKU were to be recruited. The primary outcome was presence of ochronosis in an ear biopsy. Secondary outcomes included analysis of photographs of eyes/ears, serum/urine HGA, markers of tissue damage/inflammation/oxidation, MRI imaging, gait, quality of life and Alkaptonuria Severity Score Index (qAKUSSI). Results Thirty patients, with mean age (SD) 38 (14) years, were recruited. Percentage pigmentation within ear biopsies increased with age. Ear pigmentation was detected in a 20-year-old woman implying ochronosis can start in patients before the age of 20. Gait and qAKUSSI were outside the normal range in all the patients with AKU. Conclusions Ochronosis can be present before age 20 years

    Pleiotropic Benefit of Monomeric and Oligomeric Flavanols on Vascular Health - A Randomized Controlled Clinical Pilot Study

    Get PDF
    BACKGROUND: Cardiovascular diseases are expanding to a major social-economic burden in the Western World and undermine man's deep desire for healthy ageing. Epidemiological studies suggest that flavanol-rich foods (e.g. grapes, wine, chocolate) sustain cardiovascular health. For an evidenced-based application, however, sound clinical data on their efficacy are strongly demanded. METHODS: In a double-blind, randomized, placebo-controlled intervention study we supplemented 28 male smokers with 200 mg per day of monomeric and oligomeric flavanols (MOF) from grape seeds. At baseline, after 4 and 8 weeks we measured macro- and microvascular function and a cluster of systemic biomarkers for major pathological processes occurring in the vasculature: disturbances in lipid metabolism and cellular redox balance, and activation of inflammatory cells and platelets. RESULTS: In the MOF group serum total cholesterol and LDL decreased significantly (P ≤ 0.05) by 5% (n = 11) and 7% (n = 9), respectively in volunteers with elevated baseline levels. Additionally, after 8 weeks the ratio of glutathione to glutathione disulphide in erythrocytes rose from baseline by 22% (n = 15, P<0.05) in MOF supplemented subjects. We also observed that MOF supplementation exerts anti-inflammatory effects in blood towards ex vivo added bacterial endotoxin and significantly reduces expression of inflammatory genes in leukocytes. Conversely, alterations in macro- and microvascular function, platelet aggregation, plasma levels of nitric oxide surrogates, endothelin-1, C-reactive protein, fibrinogen, prostaglandin F2alpha, plasma antioxidant capacity and gene expression levels of antioxidant defense enzymes did not reach statistical significance after 8 weeks MOF supplementation. However, integrating all measured effects into a global, so-called vascular health index revealed a significant improvement of overall vascular health by MOF compared to placebo (P ≤ 0.05). CONCLUSION: Our integrative multi-biomarker approach unveiled the pleiotropic vascular health benefit of an 8 weeks supplementation with 200 mg/d MOF in humans. TRIAL REGISTRATION: ClinicalTrials.gov NCT00742287

    ICAROS (Italian survey on CardiAc RehabilitatiOn and Secondary prevention after cardiac revascularization): Temporary report of the first prospective, longitudinal registry of the cardiac rehabilitation network GICR/IACPR

    Get PDF
    corecore