175 research outputs found

    Stage of perinatal development regulates skeletal muscle mitochondrial biogenesis and myogenic regulatory factor genes with little impact of growth restriction or cross-fostering

    Full text link
    Foetal growth restriction impairs skeletal muscle development and adult muscle mitochondrial biogenesis. We hypothesized that key genes involved in muscle development and mitochondrial biogenesis would be altered following uteroplacental insufficiency in rat pups, and improving postnatal nutrition by cross-fostering would ameliorate these deficits. Bilateral uterine vessel ligation (Restricted) or sham (Control) surgery was performed on day 18 of gestation. Males and females were investigated at day 20 of gestation (E20), 1 (PN1), 7 (PN7) and 35 (PN35) days postnatally. A separate cohort of Control and Restricted pups were cross-fostered onto a different Control or Restricted mother and examined at PN7. In both sexes, peroxisome proliferator-activated receptor (PPAR)-&gamma; coactivator-1&alpha; (PGC-1&alpha;), cytochrome c oxidase subunits 3 and 4 (COX III and IV) and myogenic regulatory factor 4 expression increased from late gestation to postnatal life, whereas mitochondrial transcription factor A, myogenic differentiation 1 (MyoD), myogenin and insulin-like growth factor I (IGF-I) decreased. Foetal growth restriction increased MyoD mRNA in females at PN7, whereas in males IGF-I mRNA was higher at E20 and PN1. Cross-fostering Restricted pups onto a Control mother significantly increased COX III mRNA in males and COX IV mRNA in both sexes above controls with little effect on other genes. Developmental age appears to be a major factor regulating skeletal muscle mitochondrial and developmental genes, with growth restriction and cross-fostering having only subtle effects. It therefore appears that reductions in adult mitochondrial biogenesis markers likely develop after weaning.<br /

    Children with Moderate Acute Malnutrition with No Access to Supplementary Feeding Programmes Experience High Rates of Deterioration and No Improvement: Results from a Prospective Cohort Study in Rural Ethiopia

    Get PDF
    Background: Children with moderate acute malnutrition (MAM) have an increased risk of mortality, infections and impaired physical and cognitive development compared to well-nourished children. In parts of Ethiopia not considered chronically food insecure there are no supplementary feeding programmes (SFPs) for treating MAM. The short-term outcomes of children who have MAM in such areas are not currently described, and there remains an urgent need for evidence-based policy recommendations. Methods: We defined MAM as mid-upper arm circumference (MUAC) of ≥11.0cm and <12.5cm with no bilateral pitting oedema to include Ethiopian government and World Health Organisation cut-offs. We prospectively surveyed 884 children aged 6–59 months living with MAM in a rural area of Ethiopia not eligible for a supplementary feeding programme. Weekly home visits were made for seven months (28 weeks), covering the end of peak malnutrition through to the post-harvest period (the most food secure window), collecting anthropometric, socio-demographic and food security data. Results: By the end of the study follow up, 32.5% (287/884) remained with MAM, 9.3% (82/884) experienced at least one episode of SAM (MUAC <11cm and/or bilateral pitting oedema), and 0.9% (8/884) died. Only 54.2% of the children recovered with no episode of SAM by the end of the study. Of those who developed SAM half still had MAM at the end of the follow up period. The median (interquartile range) time to recovery was 9 (4–15) weeks. Children with the lowest MUAC at enrolment had a significantly higher risk of remaining with MAM and a lower chance of recovering. Conclusions: Children with MAM during the post-harvest season in an area not eligible for SFP experience an extremely high incidence of SAM and a low recovery rate. Not having a targeted nutrition-specific intervention to address MAM in this context places children with MAM at excessive risk of adverse outcomes. Further preventive and curative approaches should urgently be considered

    Determination of glucose exchange rates and permeability of erythrocyte membrane in preeclampsia and subsequent oxidative stress-related protein damage using dynamic-19F-NMR

    Get PDF
    The cause of the pregnancy condition preeclampsia (PE) is thought to be endothelial dysfunction caused by oxidative stress. As abnormal glucose tolerance has also been associated with PE, we use a fluorinated-mimic of this metabolite to establish whether any oxidative damage to lipids and proteins in the erythrocyte membrane has increased cell membrane permeability. Data were acquired using 19F Dynamic-NMR (DNMR) to measure exchange of 3-fluoro-3-deoxyglucose (3-FDG) across the membrane of erythrocytes from 10 pregnant women (5 healthy control women, and 5 from women suffering from PE). Magnetisation transfer was measured using the 1D selective inversion and 2D EXSY pulse sequences, over a range of time delays. Integrated intensities from these experiments were used in matrix diagonalisation to estimate the values of the rate constants of exchange and membrane permeability. No significant differences were observed for the rate of exchange of 3-FDG and membrane permeability between healthy pregnant women and those suffering from PE, leading us to conclude that no oxidative damage had occurred at this carrier-protein site in the membrane

    Ultrafast Light and Electrons: Imaging the Invisible

    Get PDF
    In this chapter, the evolutionary and revolutionary developments of microscopic imaging are overviewed with focus on ultrashort light and electrons pulses; for simplicity, we shall use the term “ultrafast” for both. From Alhazen’s camera obscura, to Hooke and van Leeuwenhoek’s optical micrography, and on to three- and four-dimensional (4D) electron microscopy, the developments over a millennium have transformed humans’ scope of visualization. The changes in the length and time scales involved are unimaginable, beginning with the visible shadows of candles at the centimeter and second scales, and ending with invisible atoms with space and time dimensions of sub-nanometer and femtosecond, respectively. With these advances it has become possible to determine the structures of matter and to observe their elementary dynamics as they fold and unfold in real time, providing the means for visualizing materials behavior and biological function, with the aim of understanding emergent phenomena in complex systems. Both light and light-generated electrons are now at the forefront of femtosecond and attosecond science and technology, and the scope of applications has reached beyond the nuclear motion as electron dynamics become accessible

    Loss-of-function mutations in SLC30A8 protect against type 2 diabetes.

    Get PDF
    Neðst á síðunni er hægt að nálgast greinina í heild sinni með því að smella á hlekkinn View/OpenLoss-of-function mutations protective against human disease provide in vivo validation of therapeutic targets, but none have yet been described for type 2 diabetes (T2D). Through sequencing or genotyping of ~150,000 individuals across 5 ancestry groups, we identified 12 rare protein-truncating variants in SLC30A8, which encodes an islet zinc transporter (ZnT8) and harbors a common variant (p.Trp325Arg) associated with T2D risk and glucose and proinsulin levels. Collectively, carriers of protein-truncating variants had 65% reduced T2D risk (P = 1.7 × 10(-6)), and non-diabetic Icelandic carriers of a frameshift variant (p.Lys34Serfs*50) demonstrated reduced glucose levels (-0.17 s.d., P = 4.6 × 10(-4)). The two most common protein-truncating variants (p.Arg138* and p.Lys34Serfs*50) individually associate with T2D protection and encode unstable ZnT8 proteins. Previous functional study of SLC30A8 suggested that reduced zinc transport increases T2D risk, and phenotypic heterogeneity was observed in mouse Slc30a8 knockouts. In contrast, loss-of-function mutations in humans provide strong evidence that SLC30A8 haploinsufficiency protects against T2D, suggesting ZnT8 inhibition as a therapeutic strategy in T2D prevention.US National Institutes of Health (NIH) Training 5-T32-GM007748-33 Doris Duke Charitable Foundation 2006087 Fulbright Diabetes UK Fellowship BDA 11/0004348 Broad Institute from Pfizer, Inc. NIH U01 DK085501 U01 DK085524 U01 DK085545 U01 DK085584 Swedish Research Council Dnr 521-2010-3490 Dnr 349-2006-237 European Research Council (ERC) GENETARGET T2D GA269045 ENGAGE 2007-201413 CEED3 2008-223211 Sigrid Juselius Foundation Folkh lsan Research Foundation ERC AdG 293574 Research Council of Norway 197064/V50 KG Jebsen Foundation University of Bergen Western Norway Health Authority Lundbeck Foundation Novo Nordisk Foundation Wellcome Trust WT098017 WT064890 WT090532 WT090367 WT098381 Uppsala University Swedish Research Council and the Swedish Heart- Lung Foundation Academy of Finland 124243 102318 123885 139635 Finnish Heart Foundation Finnish Diabetes Foundation, Tekes 1510/31/06 Commission of the European Community HEALTH-F2-2007-201681 Ministry of Education and Culture of Finland European Commission Framework Programme 6 Integrated Project LSHM-CT-2004-005272 City of Kuopio and Social Insurance Institution of Finland Finnish Foundation for Cardiovascular Disease NIH/NIDDK U01-DK085545 National Heart, Lung, and Blood Institute (NHLBI) National Institute on Minority Health and Health Disparities N01 HC-95170 N01 HC-95171 N01 HC-95172 European Union Seventh Framework Programme, DIAPREPP Swedish Child Diabetes Foundation (Barndiabetesfonden) 5U01DK085526 DK088389 U54HG003067 R01DK072193 R01DK062370 Z01HG000024info:eu-repo/grantAgreement/EC/FP7/20201

    Neonatal exendin-4 reduces growth, fat deposition and glucose tolerance during treatment in the intrauterine growth-restricted lamb

    Get PDF
    BACKGROUND IUGR increases the risk of type 2 diabetes mellitus (T2DM) in later life, due to reduced insulin sensitivity and impaired adaptation of insulin secretion. In IUGR rats, development of T2DM can be prevented by neonatal administration of the GLP-1 analogue exendin-4. We therefore investigated effects of neonatal exendin-4 administration on insulin action and β-cell mass and function in the IUGR neonate in the sheep, a species with a more developed pancreas at birth. METHODS Twin IUGR lambs were injected s.c. daily with vehicle (IUGR+Veh, n = 8) or exendin-4 (1 nmol.kg-1, IUGR+Ex-4, n = 8), and singleton control lambs were injected with vehicle (CON, n = 7), from d 1 to 16 of age. Glucose-stimulated insulin secretion and insulin sensitivity were measured in vivo during treatment (d 12–14). Body composition, β-cell mass and in vitro insulin secretion of isolated pancreatic islets were measured at d 16. PRINCIPLE FINDINGS IUGR+Veh did not alter in vivo insulin secretion or insulin sensitivity or β-cell mass, but increased glucose-stimulated insulin secretion in vitro. Exendin-4 treatment of the IUGR lamb impaired glucose tolerance in vivo, reflecting reduced insulin sensitivity, and normalised glucose-stimulated insulin secretion in vitro. Exendin-4 also reduced neonatal growth and visceral fat accumulation in IUGR lambs, known risk factors for later T2DM. CONCLUSIONS Neonatal exendin-4 induces changes in IUGR lambs that might improve later insulin action. Whether these effects of exendin-4 lead to improved insulin action in adult life after IUGR in the sheep, as in the PR rat, requires further investigation.Kathryn L. Gatford, Siti A. Sulaiman, Saidatul N. B. Mohammad, Miles J. De Blasio, M. Lyn Harland, Rebecca A. Simmons, Julie A. Owen
    corecore