50 research outputs found
Influence of Hot Band Annealing on Cold-Rolled Microstructure and Recrystallization in AA 6016
The influence of an intermediate heat treatment at the end of hot rolling and before cold rolling on Cube texture formation during the final solution annealing of AA 6016 is investigated. Three hot bands with different initial grain sizes and textures are considered: the first one without annealing before cold rolling, while the other two hot bands are heat treated at 540 °C for 1 hour in air before being cold rolled. One of the heat-treated hot bands was left to cool down in air and the other inside the furnace. Electron-backscatter diffraction (EBSD) maps of the cold-rolled specimens and crystal plasticity simulations show no difference in the amount of Cube remaining in the microstructure at the end of cold rolling for all three specimens. The initial grain size of the hot band has no influence on the Cube texture fraction left in the microstructure at the end of cold rolling for thickness reductions higher than 65 pct. Nevertheless, the grain size of the hot band affects the shape and distribution of the Cube grains left in the microstructure and the kernel average misorientation in the cold-rolled specimens. Moreover, the heat treatment decreases the intensity of the beta fiber components (Brass, Copper, and S) in the hot band and promotes the formation of a cold-rolled microstructure with a low kernel average misorientation. Both these factors lower the probability of preferential Cube nucleation during solution annealing and keep the Cube volume fraction after recrystallization below 10 pct, while it reaches 25 pct without intermediate annealing
Effect of strain rate on tensile mechanical properties of high-purity niobium single crystals for SRF applications
An investigation of the mechanical properties of high-purity niobium single crystals is presented. Specimens were cut with different crystallographic orientations from a large grain niobium disk and uniaxial tensile tests were conducted at strain rates between 10-4 and 103 s-1. The logarithmic strain rate sensitivity for crystals oriented close to the center of a tensile axis inverse pole figure (IPF) is ~0.14 for all strain rates. The strain at failure (ranging from 0.4 to 0.9) is very sensitive to crystal orientation and maximal at ~10-2 s-1 for crystals oriented close to the center of an IPF. The high anisotropy observed at quasi-static strain rates decreased with increasing strain rate. The activation of multiple slip systems in the dynamic tests could account for this reduction in anisotropy. A transition from strain hardening to softening in the plastic domain was observed at strain rates greater than approximately 6 × 10-2 s-1 for crystals oriented close to the center of a tensile axis IPF. Shear bands were observed in specimens with orientations having similarly high Schmid factors on both {110} and {112} slip families, and they are correlated with reduced ductility. Crystal rotations at fracture are compared for the different orientations using scanning electron microscopy images and EBSD orientation maps. A rotation toward the terminal stable [101] orientation was measured for the majority of specimens (with tensile axes more than ~17° from the [001] direction) at strain rates between 1.28 × 10-2 and 1000 s-1.The authors would like to acknowledge the work of CERN's Materials, Metrology and Non-Destructive Testing (EN-MME-MM) section for granting access to their equipment for specimen preparation and scanning electron microscope (SEM) analyses. The authors would also like to thank Mr. Larry Vladic of Elite Motion LLC for lending us the high-speed camera during the high strain rate tests performed ASU. This Marie Sklodowska-Curie Action (MSCA) Innovative Training Network (ITN) receives funding from the European Union's H2020 Framework Programme under grant agreement no. 764879. T.R. Bieler, D. Kang, E. Pai Kulyadi, P. Eisenlohr, C. Kale, and K.N. Solanki acknowledge support from DOE/OHEP grant DE-SC0009962
Severe acute respiratory syndrome coronavirus 2 infection in patients with hematological malignancies in the Omicron era: Respiratory failure, need for mechanical ventilation and mortality in seronegative and seropositive patients
Background: Patients with hematological malignancies (HM) have a high risk of severe coronavirus disease 2019 (COVID-19), also in the Omicron period.Material and methods: Retrospective single-center study including HM patients with severe acute respiratory syndrome Coronavirus 2 (SARS-CoV2) infection from January 2022 to March 2023. Study outcomes were respiratory failure (RF), mechanical ventilation (MV), and COVID-related mortality, comparing patients according to SARS-CoV2 serology.Results: Note that, 112 patients were included: 39% had negative SARS-CoV2 serology. Seronegative were older (71.5 vs. 65.0 years, p = 0.04), had more often a lymphoid neoplasm (88.6% vs. 69.1%, p = 0.02), underwent anti-CD20 therapy (50.0% vs. 30.9% p = 0.04) and had more frequently a severe disease (23.0% vs. 3.0%, p = 0.02) than seropositive.Kaplan-Meier showed a higher risk for seronegative patients for RF (p = 0.014), MV (p = 0.044), and COVID-related mortality (p = 0.021). Negative SARS-CoV2 serostatus resulted in a risk factor for RF (hazards ratio [HR] 2.19, 95% confidence interval [CI] 1.03-4.67, p = 0.04), MV (HR 3.37, 95% CI 1.06-10.68, p = 0.04), and COVID-related mortality (HR 4.26, 95% CI 1.09-16.71, p = 0.04).Conclusions: HM patients with negative SARS-CoV2 serology, despite vaccinations and previous infections, have worse clinical outcomes compared to seropositive patients in the Omicron era. The use of serology for SARS-CoV2 diagnosis could be an easy tool to identify patients prone to developing complications
Discrimination of roast and ground coffee aroma
Background: Four analytical approaches were used to evaluate the aroma profile at key stages in roast and ground
coffee brew preparation (concentration within the roast and ground coffee and respective coffee brew;
concentration in the headspace of the roast and ground coffee and respective brew). Each method was evaluated
by the analysis of 15 diverse key aroma compounds that were predefined by odour port analysis.
Results: Different methods offered complimentary results for the discrimination of products; the concentration in
the coffee brew was found to be the least discriminatory and concentration in the headspace above the roast and
ground coffee was shown to be most discriminatory.
Conclusions: All approaches should be taken into consideration when classifying roast and ground coffee
especially for alignment to sensory perception and consumer insight data as all offer markedly different
discrimination abilities due to the variation in volatility, hydrophobicity, air-water partition coefficient and other physicochemical parameters of the key aroma compounds present
Can volatile organic metabolites be used to simultaneously assess microbial and mite contamination level in cereal grains and coffee beans?
A novel approach based on headspace solid-phase microextraction (HS-SPME) combined with comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry (GC×GC-ToFMS) was developed for the simultaneous screening of microbial and mite contamination level in cereals and coffee beans. The proposed approach emerges as a powerful tool for the rapid assessment of the microbial contamination level (ca. 70 min versus ca. 72 to 120 h for bacteria and fungi, respectively, using conventional plate counts), and mite contamination (ca. 70 min versus ca. 24 h). A full-factorial design was performed for optimization of the SPME experimental parameters. The methodology was applied to three types of rice (rough, brown, and white rice), oat, wheat, and green and roasted coffee beans. Simultaneously, microbiological analysis of the samples (total aerobic microorganisms, moulds, and yeasts) was performed by conventional plate counts. A set of 54 volatile markers was selected among all the compounds detected by GC×GC-ToFMS. Principal Component Analysis (PCA) was applied in order to establish a relationship between potential volatile markers and the level of microbial contamination. Methylbenzene, 3-octanone, 2-nonanone, 2-methyl-3-pentanol, 1-octen-3-ol, and 2-hexanone were associated to samples with higher microbial contamination level, especially in rough rice. Moreover, oat exhibited a high GC peak area of 2-hydroxy-6-methylbenzaldehyde, a sexual and alarm pheromone for adult mites, which in the other matrices appeared as a trace component. The number of mites detected in oat grains was correlated to the GC peak area of the pheromone. The HS-SPME/GC×GC-ToFMS methodology can be regarded as the basis for the development of a rapid and versatile method that can be applied in industry to the simultaneous assessment the level of microbiological contamination and for detection of mites in cereals grains and coffee beans
HE-LHC: The High-Energy Large Hadron Collider – Future Circular Collider Conceptual Design Report Volume 4
In response to the 2013 Update of the European Strategy for Particle Physics (EPPSU), the Future Circular Collider (FCC) study was launched as a world-wide international collaboration hosted by CERN. The FCC study covered an energy-frontier hadron collider (FCC-hh), a highest-luminosity high-energy lepton collider (FCC-ee), the corresponding 100 km tunnel infrastructure, as well as the physics opportunities of these two colliders, and a high-energy LHC, based on FCC-hh technology. This document constitutes the third volume of the FCC Conceptual Design Report, devoted to the hadron collider FCC-hh. It summarizes the FCC-hh physics discovery opportunities, presents the FCC-hh accelerator design, performance reach, and staged operation plan, discusses the underlying technologies, the civil engineering and technical infrastructure, and also sketches a possible implementation. Combining ingredients from the Large Hadron Collider (LHC), the high-luminosity LHC upgrade and adding novel technologies and approaches, the FCC-hh design aims at significantly extending the energy frontier to 100 TeV. Its unprecedented centre-of-mass collision energy will make the FCC-hh a unique instrument to explore physics beyond the Standard Model, offering great direct sensitivity to new physics and discoveries
FCC Physics Opportunities: Future Circular Collider Conceptual Design Report Volume 1
We review the physics opportunities of the Future Circular Collider, covering its e+e-, pp, ep and heavy ion programmes. We describe the measurement capabilities of each FCC component, addressing the study of electroweak, Higgs and strong interactions, the top quark and flavour, as well as phenomena beyond the Standard Model. We highlight the synergy and complementarity of the different colliders, which will contribute to a uniquely coherent and ambitious research programme, providing an unmatchable combination of precision and sensitivity to new physics
FCC-ee: The Lepton Collider: Future Circular Collider Conceptual Design Report Volume 2
In response to the 2013 Update of the European Strategy for Particle Physics, the Future Circular Collider (FCC) study was launched, as an international collaboration hosted by CERN. This study covers a highest-luminosity high-energy lepton collider (FCC-ee) and an energy-frontier hadron collider (FCC-hh), which could, successively, be installed in the same 100 km tunnel. The scientific capabilities of the integrated FCC programme would serve the worldwide community throughout the 21st century. The FCC study also investigates an LHC energy upgrade, using FCC-hh technology. This document constitutes the second volume of the FCC Conceptual Design Report, devoted to the electron-positron collider FCC-ee. After summarizing the physics discovery opportunities, it presents the accelerator design, performance reach, a staged operation scenario, the underlying technologies, civil engineering, technical infrastructure, and an implementation plan. FCC-ee can be built with today’s technology. Most of the FCC-ee infrastructure could be reused for FCC-hh. Combining concepts from past and present lepton colliders and adding a few novel elements, the FCC-ee design promises outstandingly high luminosity. This will make the FCC-ee a unique precision instrument to study the heaviest known particles (Z, W and H bosons and the top quark), offering great direct and indirect sensitivity to new physics